Infections with bacterial or fungal biofilms have emerged as a major public heath concern because biofilm-growing cells are highly resistant to both antibiotics and host immune defenses. This review focuses on the progress in understanding the mechanisms of biofilm-specific antimicrobial resistance and in developing innovative therapeutic measures based on novel antibiofilm agents.
Recent work has shown that poly(3-hexylthiophene) (P3HT) and the surface-functionalized fullerene 1-(3-methyloxycarbonyl)propyl(1-phenyl[6,6])C(61) (PCBM) are much more miscible than originally thought, and the evidence of this miscibility requires a return to understanding the optimal morphology and structure of organic photovoltaic active layers. This manuscript describes the results of experiments that were designed to provide quantitative thermodynamic information on the miscibility, interdiffusion, and depth profile of P3HT : PCBM thin films that are formed by thermally annealing initial bilayers. It is found that the resultant thin films consist of a 'bulk' layer that is not influenced by the air or substrate surface. The composition of PCBM in this 'bulk' layer increases with increased PCBM loading in the original bilayer until the 'bulk' layer contains 22 vol% PCBM. The introduction of additional PCBM into the sample does not increase the amount of PCBM dispersed in this 'bulk' layer. This observation is interpreted to indicate that the miscibility limit of PCBM in P3HT is 22 vol%, while the precise characterization of the depth profiles in these films shows that the PCBM selectively segregates to the silicon and near air surface. The selective segregation of the PCBM near the air surface is ascribed to an entropic driving force.
Neuromorphic
computing inspired by the neural systems in human brain will overcome
the issue of independent information processing and storage. An artificial
synaptic device as a basic unit of a neuromorphic computing system
can perform signal processing with low power consumption, and exploring
different types of synaptic transistors is essential to provide suitable
artificial synaptic devices for artificial intelligence. Hence, for
the first time, an electret-based synaptic transistor (EST) is presented,
which successfully shows synaptic behaviors including excitatory/inhibitory
postsynaptic current, paired-pulse facilitation/depression, long-term
memory, and high-pass filtering. Moreover, a neuromorphic computing
simulation based on our EST is performed using the handwritten artificial
neural network, which exhibits an excellent recognition accuracy (85.88%)
after 120 learning epochs, higher than most reported organic synaptic
transistors and close to the ideal accuracy (92.11%). Such a novel
synaptic device enriches the diversity of synaptic transistors, laying
the foundation for the diversified development of the next generation
of neuromorphic computing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.