Alkaline activated carbons are widely used as adsorbents of hydrogen sulfide (H2S), one of the major odorous compounds arising from sewage treatment facilities. Although a number of studies have explored the effects of various parameters, mechanisms of H2S adsorption by alkaline carbons are not yet fully understood. The major difficulty seems to lie in the fact that little is known with certainty about the predominant reactions occurring on the carbon surface. In this study, the surface properties of alkaline activated carbons were systematically investigated to further exploit and better understand the mechanisms of H2S adsorption by alkaline activated carbons. Two commercially available alkaline activated carbons and their representative exhausted samples (8 samples collected at different height of the column after H2S breakthrough tests) were studied. The 8 portions of the exhausted carbon were used to represent the H2S/carbon reaction process. The surface properties of both the original and the exhausted carbons were characterized using the sorption of nitrogen (BET test), surface pH, Boehm titration, thermal and FTIR analysis. Porosity and surface area provide detailed information about the pore structure of the exhausted carbons with respect to the reaction extent facilitating the understanding of potential pore blockages. Results of Boehm titration and FTIR both demonstrate the significant effects of surface functional groups, and identification of oxidation products confirmed the different mechanisms involved with the two carbons. From the DTG curves of thermal analysis, two well-defined peaks representing two products of surface reactions (i.e., sulfur and sulfuric acid) were observed from the 8 exhausted portions with gradually changing patterns coinciding with the extent of the reaction. Surface pH values of the exhausted carbons show a clear trend of pH drop along the reaction extent, while pH around 2 was observed for the bottom of the bed indicating sulfuric acid as the predominant products. Although both carbons are coal-based and of KOH impregnated type, performances of different carbons differ significantly. A correlation is well established to link the reaction extent with various surface properties. In summary, not only the homogeneous alkali impregnation and physical porosity but also the carbon surface chemistry are significant factors influencing the performances of alkaline activated carbons as H2S adsorbents.
Biological treatment is an emerging and prevalent technology for treating off-gases from wastewater treatment plants. The most commonly reported odorous compound in off-gases is hydrogen sulfide (H(2)S), which has a very low odor threshold. A self-designed, bench-scale, cross-flow horizontal biotrickling filter (HBF) operated with bacteria immobilized activated carbon (termed biological activated carbon-BAC), was applied for the treatment of H(2)S. A mixed culture of sulfide-oxidizing bacteria dominated by Acidithiobacillus thiooxidans acclimated from activated sludge was used as bacterial seed and the biofilm was developed by culturing the bacteria in the presence of carbon pellets in mineral medium. HBF performance was evaluated systematically over approximately 120 days, depending on a series of changing factors including inlet H(2)S concentration, gas retention time (GRT), pH of recirculation solution, upset and recovery, sulfate accumulation, pressure drop, gas-liquid ratio, and shock loading. The biotrickling filter system can operate at high efficiency from the first day of operation. At a volumetric loading of 900 m(3) m(-3) h(-1) (at 92 ppmv H(2)S inlet concentration), the BAC exhibited maximum elimination capacity (113 g H(2)S/m(-3) h(-1)) and a removal efficiency of 96% was observed. If the inlet concentration was kept at around 20 ppmv, high H(2)S removal (over 98%) was achieved at a GRT of 4 s, a value comparable with those currently reported for biotrickling filters. The bacterial population in the acidic biofilter demonstrated capacity for removal of H(2)S over a broad pH range (pH 1-7). A preliminary investigation into the different effects of bacterial biodegradation and carbon adsorption on system performance was also conducted. This study shows the HBF to be a feasible and economic alternative to physical and chemical treatments for the removal of H(2)S.
Biological treatments of odorous compounds, as compared to chemical or physical technologies, are in general ecologically and environmentally favourable. However, there are some inefficiencies relative to the media used in biofiltration processes, such as the need for an adequate residence time; the limited lifetime, and pore blockage of media, which at present render the technology economically non-viable. The aim of the study is to develop novel active media to be used in performance-enhanced biofiltration processes, by achieving an optimum balance and combination of the media adsorption capacity with the biodegradation of H2S through the bacteria immobilised on the media. An enrichment culture was obtained from activated sludges in order to metabolise thiosulphate. Batch-wise experiments were conducted to optimise the bacteria immobilisation on activated carbon, so as to develop a novel "biocarbon". Biofilm was mostly developed through culturing the bacteria with the presence of carbons in mineral media. SEM and BET tests of the carbon along with the culturing process were used to identify, respectively, the biofilm development and biocarbon porosity. Breakthrough tests evaluated the biocarbon performance with varying gas resistance time, inlet H2S concentration, and type of support materials. Fundamental issues were discussed, including type of support material, mode of bacteria immobilisation, pore blockages, and biodegradation kinetics, etc. This batch-wise study provides a basis for our future research on optimisation of the biofiltration process using a bio-trickling reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.