Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5-28 °C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv. Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
SUMMARY In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia‐Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double‐strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11–RAD50–NBS1 (MRN) complex, and acts in a RAD51‐independent but chromosome axis‐dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.
In eukaryotes, the conserved kinase Ataxia Telangiectasia Mutated (ATM) negatively regulates DNA double-strand break (DSB) formation and plays a central role in DSB repair. Here, by using cytogenetic approaches, we demonstrate that ATM also plays an essential role in protecting meiotic chromosome integrity in Arabidopsis thaliana at extreme high temperature. We determined the chromosome localization patterns of DSB formation proteins SPO11-1 and DFO during prophase I, both of which were disturbed by heat stress. Evaluation of the number of RAD51, DMC1, SPO11-1 and DFO protein foci in meiocytes of Arabidopsis atm mutant clarifies that ATM does not mediate the heat-induced reduction in DSB formation. Interestingly, chromosome spread analysis showed that chromosome fragmentation level was significantly increased in atm but was lowered in the mre11 and mre11 atm mutants under high temperature, indicating that ATM-dependent meiotic chromosome integrity at high temperature relies on the functional MRE1-RAD50-NBS1 (MRN) complex. Moreover, contrary to the rad51 and mnd1 mutants, which exhibited enhanced meiotic chromosome integrity under heat stress, the rad51atm and mnd1atm mutants retained high levels of chromosome fragmentation at extreme high temperature. Furthermore, heat stress reduced chromosome fragments in the syn1 and syn1 atm mutants. Collectively, these data suggest that ATM-mediated DSB repair is required for meiotic genome stability in plants at extreme high temperature, which acts in a RAD51-independent manner and relies on functional chromosome axis.
Alterations of environmental temperature affect multiple meiosis processes in flowering plants. Polyploid plants derived from whole genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress, but meanwhile face a challenge for organization and segregation of doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis thaliana. Under low to mildly-increased temperatures (5-28°C), irregular chromosome segregation universally takes place in synthesized autotetraploid Columbia-0 (Col-0). Similar meiosis lesions occur in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv. Westar), but not in evolutionary-derived hexaploid wheat (Triticum aestivum). As temperature increases to extremely high, chromosome separation and tetrad formation are severely disordered due to univalent formation caused by suppressed crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which are negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over prominently by impacting homolog pairing. Besides, we showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of syn1 mutant, and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects lateral region of synaptonemal complex (SC) by impacting stability of axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than that of diploid Arabidopsis. Taken together, our study provide evidence suggesting that WGD without evolutionary and/or natural adaption negatively affects stability and thermal tolerance of meiotic recombination in Arabidopsis thaliana.
In eukaryotes, the conserved kinase Ataxia Telangiectasia Mutated (ATM) negatively regulates DNA double-strand break (DSB) formation and plays a central role in DSB repair. Here, by using cytogenetic approaches, we demonstrate that ATM also plays an essential role in protecting meiotic chromosome integrity in Arabidopsis thaliana at extreme high temperature. We determined the chromosome localization patterns of DSB formation proteins SPO11-1 and DFO during prophase I, both of which were disturbed by heat stress. Evaluation of the number of RAD51, DMC1, SPO11-1 and DFO protein foci in meiocytes of Arabidopsis atm mutant clarifies that ATM does not mediate the heat-induced reduction in DSB formation. Interestingly, meiotic spread analysis showed that chromosome fragmentation level was significantly increased in atm but was lowered in the mre11 and mre11 atm mutants under high temperature, indicating that ATM-dependent meiotic chromosome integrity at high temperature relies on the functional MRE1-RAD50-NBS1 (MRN) complex. Moreover, contrary to the rad51 and mnd1 mutants, which exhibited enhanced meiotic chromosome integrity under heat stress, the rad51 atm and mnd1 atm mutants retained high levels of chromosome fragmentation at extreme high temperature. Furthermore, heat stress reduced chromosome fragmentation level in the syn1 and syn1 atm mutants. Collectively, these data suggest that ATM-mediated DSB repair is required for meiotic genome stability in plants at extreme high temperature, which possibly acts in a RAD51-independent manner and relies on functional chromosome axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.