The tongue image provides important physical information of humans. It is of great importance for diagnoses and treatments in clinical medicine. Herbal prescriptions are simple, noninvasive, and have low side effects. Thus, they are widely applied in China. Studies on the automatic construction technology of herbal prescriptions based on tongue images have great significance for deep learning to explore the relevance of tongue images for herbal prescriptions, it can be applied to healthcare services in mobile medical systems. In order to adapt to the tongue image in a variety of photographic environments and construct herbal prescriptions, a neural network framework for prescription construction is designed. It includes single/double convolution channels and fully connected layers. Furthermore, it proposes the auxiliary therapy topic loss mechanism to model the therapy of Chinese doctors and alleviate the interference of sparse output labels on the diversity of results. The experiment use the real-world tongue images and the corresponding prescriptions and the results can generate prescriptions that are close to the real samples, which verifies the feasibility of the proposed method for the automatic construction of herbal prescriptions from tongue images. Also, it provides a reference for automatic herbal prescription construction from more physical information.
In Traditional Chinese Medicine (TCM), facial features are important basis for diagnosis and treatment. A doctor of TCM can prescribe according to a patient's physical indicators such as face, tongue, voice, symptoms, pulse. Previous works analyze and generate prescription according to symptoms. However, research work to mine the association between facial features and prescriptions has not been found for the time being. In this work, we try to use deep learning methods to mine the relationship between the patient's face and herbal prescriptions (TCM prescriptions), and propose to construct convolutional neural networks that generate TCM prescriptions according to the patient's face image. It is a novel and challenging job. In order to mine features from different granularities of faces, we design a multi-scale convolutional neural network based on three-grained face, which mines the patient's face information from the organs, local regions, and the entire face. Our experiments show that convolutional neural networks can learn relevant information from face to prescribe, and the multi-scale convolutional neural networks based on three-grained face perform better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.