The design of low-cost yet high-efficiency electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) over a wide pH range is highly challenging. We now report a hierarchical co-assembly of interacting MoS 2 and Co 9 S 8 nanosheets attached on Ni 3 S 2 nanorod arrays which are supported on nickel foam (NF). This tiered structure endows high performance toward HER and OER over a very broad pH range. By adjusting the molar ratio of the Co:Mo precursors, we have created CoMoNiS-NF-xy composites (x:y means Co:Mo molar ratios ranging from 5:1 to 1:3) with controllable morphology and composition. The three-dimensional composites have an abundance of active sites capable of universal pH catalytic HER and OER activity. The CoMoNiS-NF-31 demonstrates the best electrocatalytic activity, giving ultralow overpotentials (113, 103, and 117 mV for HER and 166, 228, and 405 mV for OER) to achieve a current density of 10 mA cm −2 in alkaline, acidic, and neutral electrolytes, respectively. It also shows a remarkable balance between electrocatalytic activity and stability. Based on the distinguished catalytic performance of CoMoNiS-NF-31 toward HER and OER, we demonstrate a two-electrode electrolyzer performing water electrolysis over a wide pH range, with low cell voltages of 1.54, 1.45, and 1.80 V at 10 mA cm −2 in alkaline, acidic, and neutral media, respectively. First-principles calculations suggest that the high OER activity arises from electron transfer from Co 9 S 8 to MoS 2 at the interface, which alters the binding energies of adsorbed species and decreases overpotentials. Our results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0−14) electrocatalysts for overall water splitting.
We report a robust, universal “soft” nitriding method to grow in situ ligand-free ultrasmall noble metal nanocatalysts (UNMN; e.g., Au, Pd, and Pt) onto carbon. Using low-temperature urea pretreatment at 300 °C, soft nitriding enriches nitrogen-containing species on the surface of carbon supports and enhances the affinity of noble metal precursors onto these supports. We demonstrated sub-2-nm, ligand-free UNMNs grown in situ on seven different types of nitrided carbons with no organic ligands via chemical reduction or thermolysis. Ligand-free UNMNs supported on carbon showed superior electrocatalytic activity for methanol oxidation compared to counterparts with surface capping agents or larger nanocrystals on the same carbon supports. Our method is expected to provide guidelines for the preparation of ligand-free UNMNs on a variety of supports and, additionally, to broaden their applications in energy conversion and electrochemical catalysis.
A facile solution-phase synthetic approach is reported to engineer the size effect of sub-100 nm PdAgCu mesoporous nanospheres in ethanol electrooxidation.
A high-resolution computerized calorimeter capable of fully automatic operation in either ac or relaxation modes is described. Emphasis is given to a new version of the relaxation technique in which the heater power is ramped linearly in time. This improvement results in superior performance and convenience in studying both first- and second-order phase transitions and allows quantitative evaluation of latent heats as well as pretransitional heat capacity variations. Examples are given for the use of this calorimeter in the study of liquid crystal phase transitions.
The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5 degrees C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (P(beta')) and liquid-crystalline (L(alpha)) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of approximately 100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by P(beta')(mst), differing from the initial P(beta') was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of P(beta')(mst) into P(beta') occurs for over 24 h but only by way of the phase sequence P(beta')(mst) --> L(beta') --> P(beta'). According to differential scanning calorimetry (DSC), the enthalpy of the P(beta')(mst)-L(alpha) transition is by approximately 5% lower than that of the P(beta')-L(alpha) transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3 degrees C/min, a smooth monotonic increase of the lamellar spacing from its subgel (L(c)) to its gel (L(beta')) phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a "sequential" relaxation mechanism for the subgel-gel transition which is not accompanied by growth of domains of the final phase within the initial one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.