Apoptosis contributes to myocardial ischemia/reperfusion (MI/R) injury, and both thioredoxin (Trx) and nitric oxide have been shown to exert antiapoptotic effects in vitro . Recent evidence suggests that this particular action of Trx requires S-nitrosation at Cys-69. The present study sought to investigate whether or not exogenously applied Trx reduces MI/R injury in vivo and to which extent this effect depends on S-nitrosation. Adult mice were subjected to 30 min of MI and treated with either vehicle or human Trx (hTrx, 2 mg/kg, i.p.) 10 min before reperfusion. Native hTrx was incorporated into myocardial tissue as shown by immunostaining, and reduced MI/R injury as evidenced by decreased terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, DNA fragmentation, caspase-3 activity, and infarct size. When hTrx was partially S-nitrosated by preincubation with S -nitrosoglutathione, its cardioprotective effect was markedly enhanced. Treatment with hTrx significantly reduced p38 mitogen-activated protein kinase (MAPK) activity, and this effect was also potentiated by S-nitrosation. To further address the role of S-nitrosation for the overall antiapoptotic effect to Trx, the action of Escherichia coli Trx (eTrx) was investigated in the same model. Whereas eTrx inhibited MI/R-induced apoptosis to a degree similar to hTrx, S-nitrosation of this protein, which lacks Cys-69, failed to further enhance its antiapoptotic action. Collectively, our results demonstrate that systemically applied Trx is taken up by the myocardium to exert potent cardioprotective effects in vivo , offering interesting therapeutic avenues. In the case of hTrx, these effects are further potentiated by S-nitrosation, but this posttranslational modification is not essential for protection.
Background-Omi/HtrA2 is a proapoptotic mitochondrial serine protease involved in caspase-dependent as well as caspase-independent cell death. However, the role of Omi/HtrA2 in the apoptotic cell death that occurs in vivo under pathological conditions remains unknown. The present study was designed to investigate whether Omi/HtrA2 plays an important role in postischemic myocardial apoptosis. Methods and Results-Male adult mice were subjected to 30 minutes of myocardial ischemia followed by reperfusion and treated with vehicle or ucf-101, a novel and specific Omi/HtrA2 inhibitor, 10 minutes before reperfusion. Myocardial ischemia/reperfusion significantly increased cytosolic Omi/HtrA2 content and markedly increased apoptosis. Treatment with ucf-101 exerted significant cardioprotective effects, as evidenced by less terminal dUTP nick end-labeling staining, a lower incidence of DNA ladder fragmentation, and smaller infarct size. Furthermore, treatment with ucf-101 before reperfusion attenuated X-linked inhibitor of apoptosis protein degradation and inhibited caspase-9 and caspase-3 activities. Conclusion-Taken
Background-Peroxisome proliferator-activated receptor (PPAR) signaling pathways have been reported to exert anti-inflammatory effects and attenuate atherosclerosis formation. However, the mechanisms responsible for their anti-inflammatory and antiatherosclerotic effects remain largely unknown. The present study tested the hypothesis that a PPAR␥ agonist may exert significant endothelial protection by antioxidative and antinitrative effects. Methods and Results-Male New Zealand White rabbits were randomized to receive a normal (control) or a high-cholesterol diet and treated with vehicle or rosiglitazone (a PPAR␥ agonist) 3 mg · kg Ϫ1 · d Ϫ1 for 5 weeks beginning 3 weeks after the high-cholesterol diet. At the end of 8 weeks of a high-cholesterol diet, the rabbits were killed, and the carotid arteries were isolated. Bioactive nitric oxide was determined functionally (endothelium-dependent vasodilatation) and biochemically (the phosphorylation of vasodilator-stimulated phosphoprotein, or P-VASP). Vascular superoxide production, PPAR␥, gp91 phox , and inducible nitric oxide synthase (iNOS) expression, and vascular ONOO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.