To optimize the segment storage and hoisting plan of precast segmental composite box girders with corrugated steel web bridges, China’s first precast segmental composite girder bridge with corrugated steel webs is taken as the background. The difference between the precast segmental composite box girders with corrugated steel webs and the traditional concrete box girder is proven by numerical simulation. The stress and deformation characteristics of the segmental girder during storage and hoisting are analysed, and reasonable control measures are proposed. The data suggested that compared with ordinary concrete box girders, the smaller torsional stiffness and lateral stiffness of the precast segmental composite box girder with corrugated steel web segments lead to larger roof stress and deformation during the storage and hoisting periods. The number of storage layers of segmental girders should not exceed two, and the four hoisting point scheme should be adopted for hoisting. It is recommended to set one to two channel steel supports of no less than 20 grade steel between the top and bottom plates to avoid excessive deformation of the roof. With the increase in the segment length, the roof deformation and stress increased regardless of the storage period and the hoisting period. If the safety factor needs to be increased, when the segment length is short (1.6 m–3.2 m), increasing the support size is recommended. When the segment length is longer (4.0 m, 4.8 m), increasing the number of supports is recommended.
To study the mechanical properties of steel–concrete joints during construction, the Mao Port Bridge in Shanghai is used as a case study. The mechanical properties of the bridge and the joint under the construction conditions were studied based on the site construction monitoring results, the finite element calculation of the entire bridge and the refined model of the joint. The results show that the finite element analysis of the bridge and the stress analysis of the joint during the construction phase agreed with the measured values, the end of block 0# of the main span remained in compression during construction and the compressive stresses varied in a zigzag pattern with the progress of construction. The lifting of the mid-span steel beam is a critical construction condition where the side spans of the girders are stretched upwards by 20.9 mm and the main spans are stretched downwards by 32.3 mm. When the steel beam was lifted, the joint was compressed as a whole. At the joint, the longitudinal stresses in the steel structure gradually decreased from the front bearing plate to the joint face, while the longitudinal stresses in the concrete structure gradually increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.