Revenue Management of Service Systems under Incomplete Information Revenue management with reusable resources finds many important applications in today's economy, such as cloud computing services, car/bicycle rental services, ride-hailing services, hotel management, project team management, and call center services. The existing literature predominantly assumes that the stochastic demand and service processes are given as an input to the models, and the pricing decisions are made with full knowledge of the distributional information. However, in practice, the decision maker may not know how demand or service rates react to price changes. Thus, the decision maker needs to learn the underlying mapping between prices and rates from past observations, while maximizing the total expected revenue on the fly. In “Online Learning and Pricing for Service Systems with Reusable Resources”, H. Jia, C. Shi, and S. Shen developed a series of online learning algorithms for revenue management problems with reusable resources and showed that they admit an optimal regret bound.
We consider Benders decomposition for solving two-stage stochastic programs with complete recourse and finite samples of uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification step in each iteration to learn cuts that are more likely to be valuable cuts. The LearnBD algorithm includes three phases: (i) cut sampling, (ii) cut classifier construction using support vector machines (SVM), and (iii) cut classification. We run the LearnBD algorithm on instances of capacitated facility location problems under uncertain demand. Our results show that SVM cut classifier works effectively for identifying valuable cuts and the LearnBD algorithm improves the overall computational efficiency for randomly generated instances with various sizes and complexities.
Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.
A lower bound for a finite-scenario-based chance-constrained program is the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of solving larger subproblems. The quality of the bound depends on how the scenarios are grouped. In this paper, we formulate a mixed-integer bilevel program that optimally groups scenarios to tighten the quantile bounds. For general chance-constrained programs, we propose a branch-and-cut algorithm to optimize the bilevel program, and for chance-constrained linear programs, a mixed-integer linear-programming reformulation is derived. We also propose several heuristics for grouping similar or dissimilar scenarios. Our computational results demonstrate that optimal grouping bounds are much tighter than heuristic bounds, resulting in smaller root-node gaps and better performance of scenario decomposition for solving chance-constrained 0-1 programs. Also, the optimal grouping bounds can be greatly strengthened using larger group size. Summary of Contribution: Chance-constrained programs are in general NP-hard but widely used in practice for lowering the risk of undesirable outcomes during decision making under uncertainty. Assuming finite scenarios of uncertain parameter, chance-constrained programs can be reformulated as mixed-integer linear programs with binary variables representing whether or not the constraints are satisfied in corresponding scenarios. A useful quantile bound for solving chance-constrained programs can be improved by grouping subsets of scenarios at the expense of solving larger subproblems. In this paper, we develop algorithms for optimally and heuristically grouping scenarios to tighten the quantile bounds. We aim to improve both the computation and solution quality of a variety of chance-constrained programs formulated for different Operations Research problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.