This paper made a qualitative identification of ordinary vegetable oil and waste cooking oil based on Raman spectroscopy. Raman spectra of 73 samples of four varieties oil were acquired through the portable Raman spectrometer. Then, a partial least squares discriminant analysis (PLS-DA) model and a discrimination model based on characteristic wave band ratio were established. A classification variable model of olive oil, peanut oil, corn oil and waste cooking oil that was established through the PLS-DA model could identify waste cooking oil accurately from vegetable oils. The identification model established based on selection of waveband characteristics and intensity ratio of different Raman spectrum characteristic peaks could distinguish vegetable oils from waste cooking oil accurately. Research results demonstrated that both ratio method and PLS-DA could identify waste cooking oil samples accurately. The identification model based on characteristic waveband ratio is simpler than PLS-DA model. It is widely applicable to identification of waste cooking oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.