The users' privacy concerns mandate data publishers to protect privacy by anonymizing the data before sharing it with data consumers. Thus, the ultimate goal of privacy-preserving representation learning is to protect user privacy while ensuring the utility, e.g., the accuracy of the published data, for future tasks and usages.Privacy-preserving embeddings are usually functions that are encoded to low-dimensional vectors to protect privacy while preserving important semantic information about an input text. We demonstrate that these embeddings still leak private information, even though the low dimensional embeddings encode generic semantics. We develop two classes of attacks, i.e., adversarial classification attack and adversarial generation attack, to study the threats for these embeddings. In particular, the threats are (1) these embeddings may reveal sensitive attributes letting alone if they explicitly exist in the input text, and (2) the embedding vectors can be partially recovered via generation models. Besides, our experimental results show that our approach can produce higher-performing adversary models than other adversary baselines.
Solving multi-objective optimization problems is important in various applications where users are interested in obtaining optimal policies subject to multiple (yet often conflicting) objectives. A typical approach to obtain the optimal policies is to first construct a loss function based on the scalarization of individual objectives and then derive optimal policies that minimize the scalarized loss function. Albeit simple and efficient, the typical approach provides no insights/mechanisms on the optimization of multiple objectives due to the lack of ability to quantify the inter-objective relationship. To address the issue, we propose to develop a new efficient gradient-based multi-objective reinforcement learning approach that seeks to iteratively uncover the quantitative inter-objective relationship via finding a minimum-norm point in the convex hull of the set of multiple policy gradients when the impact of one objective on others is unknown a priori. In particular, we first propose a new PAOLS algorithm that integrates pruning and approximate optimistic linear support algorithm to efficiently discover the weight-vector sets of multiple gradients that quantify the inter-objective relationship. Then we construct an actor and a multi-objective critic that can co-learn the policy and the multi-objective vector value function. Finally, the weight discovery process and the policy and vector value function learning process can be iteratively executed to yield stable weight-vector sets and policies. To validate the effectiveness of the proposed approach, we present a quantitative evaluation of the approach based on three case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.