BackgroundHepatocellular carcinoma (HCC) is a complex disease with a poor outlook for patients in advanced stages. Immune cells play an important role in the progression of HCC. The metabolism of sphingolipids functions in both tumor growth and immune infiltration. However, little research has focused on using sphingolipid factors to predict HCC prognosis. This study aimed to identify the key sphingolipids genes (SPGs) in HCC and develop a reliable prognostic model based on these genes.MethodsThe TCGA, GEO, and ICGC datasets were grouped using SPGs obtained from the InnateDB portal. A prognostic gene signature was created by applying LASSO-Cox analysis and evaluating it with Cox regression. The validity of the signature was verified using ICGC and GEO datasets. The tumor microenvironment (TME) was examined using ESTIMATE and CIBERSORT, and potential therapeutic targets were identified through machine learning. Single-cell sequencing was used to examine the distribution of signature genes in cells within the TME. Cell viability and migration were tested to confirm the role of the key SPGs.ResultsWe identified 28 SPGs that have an impact on survival. Using clinicopathological features and 6 genes, we developed a nomogram for HCC. The high- and low-risk groups were found to have distinct immune characteristics and response to drugs. Unlike CD8 T cells, M0 and M2 macrophages were found to be highly infiltrated in the TME of the high-risk subgroup. High levels of SPGs were found to be a good indicator of response to immunotherapy. In cell function experiments, SMPD2 and CSTA were found to enhance survival and migration of Huh7 cells, while silencing these genes increased the sensitivity of Huh7 cells to lapatinib.ConclusionThe study presents a six-gene signature and a nomogram that can aid clinicians in choosing personalized treatments for HCC patients. Furthermore, it uncovers the connection between sphingolipid-related genes and the immune microenvironment, offering a novel approach for immunotherapy. By focusing on crucial sphingolipid genes like SMPD2 and CSTA, the efficacy of anti-tumor therapy can be increased in HCC cells.
Polymer-composite materials have the characteristics of light weight, high load, corrosion resistance, heat resistance, and high oil resistance. In particular, graphene composite has better electrical conductivity and mechanical performance. However, the raw materials of graphene composite are processed into semi-finished products, directly affecting their performance and service life. The electromagnetic pulse compaction was initially studied to get the product Graphene/PEKK composite powder. Simultaneously, spark plasma sintering was used to get the bars to determine the electrical conductivity of Graphene/PEKK composite. On the basis of this result, conducting Graphene/PEKK composite powder can be processed by electromagnetic pulse compaction. Finite element numerical analysis was used to obtain process parameters during the electromagnetic pulse compaction. The results show that discharge voltage and discharge capacitance influence on the magnetic force, which is a main moulding factor affecting stress, strain and density distribution on the specimen during electromagnetic pulse compaction in a few microseconds.
The robustness and resilience of complex networks have been widely studied and discussed in both research and industry because today, the diversity of system components and the complexity of the connection between units are increasingly influencing the reliability of complex systems. Previous studies have focused on node failure in networks, proposing several performance indicators. However, a single performance indicator cannot comprehensively measure all the performance aspects; thus, the selected performance indicators and recovery strategies lack consistency with respect to the targeted complex systems. This paper introduces a novel stress–strength-balanced weighted network model based on two network transmission hypotheses. Then, with respect to different concerns of the complex network, we propose two modified network performance measurement indicators and compare these indicators in terms of their trends in the attack process. In addition, we introduce several network recovery strategies and compare their efficiencies. Our findings are as follows: (1) The evaluation and judgment of the network performance depend on the performance measurement indicators we use. (2) Different recovery strategies exhibit distinct efficiencies in recovering different aspects of network performance, and no strategy exists that can improve all the network performance aspects simultaneously. (3) The timing of the recovery is proved to have a deep influence on the cost and efficiency of network recovery; thus, the optimal recovery strategy for a damaged network varies with the extent of the damage. From the results of the simulation of the attack-recovery process, we conclude that while defining and analyzing complex network models, we should adjust our network topology, weight assignment, and performance indicators in accordance with the focal characteristics of complex systems so that we can use the network model to build robust complex systems and efficient logistics and maintenance strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.