BackgroundBiphenotypic acute leukemia is a rare disorder that is difficult to diagnose. It displays features of both myeloid and lymphoid lineage. There is still a lack of studies in biphenotypic acute leukemia in a Chinese population. We present here a comprehensive investigation of the clinical and biological characteristics, and outcome of biphenotypic acute leukemia in our hospital in over a seven year period. Design and MethodsWe retrospectively analyzed 452 adult acute leukemia patients diagnosed according to French-American-British (FAB) classification and biphenotypic acute leukemia diagnosed according to European Group for the Immunological Characterization of Leukemias (EGIL) classification, respectively. Biological characteristics, response to treatment, and outcome were examined in biphenotypic acute leukemia patients and compared with that in acute myeloid leukemia and acute lymphoblastic leukemia patients with complete follow-up profiles diagnosed in the same period. ResultsOf 452 acute leukemia patients, 21 cases (4.6%) were diagnosed as biphenotypic acute leukemia. Among them, 14 (66.7%) were B lymphoid and myeloid, 5 (23.8%) were T lymphoid and myeloid, one (4.8%) was T/B lymphoid and one (4.8%) was trilineage differentiation. When compared with acute myeloid leukemia and acute lymphoblastic leukemia, patients with biphenotypic acute leukemia showed significantly higher incidence of CD34 antigen expression, unfavorable karyotypes, and extramedullary infiltration (p<0.05). In this cohort of patients with biphenotypic acute leukemia, t(9;22) was the most common abnormality in chromosome structure. The median disease-free survival and overall survival in biphenotypic acute leukemia patients was five months and ten months, respectively, significantly shorter than those in acute myeloid leukemia and acute lymphoblastic leukemia patients (p<0.05). ConclusionsThe prognosis of biphenotypic acute leukemia patients is poor when compared with de novo acute myeloid leukemia or acute lymphoblastic leukemia. Biphenotypic acute leukemia patients showed a much higher incidence of CD34 antigen expression, complex abnormal karyotype, extramedullary infiltration, relapse, and resistance to therapy after relapse.Key words: biphenotypic leukemia, immunophenotype, cytogenetics, prognosis. Haematologica 2009;94:919-927.doi:10.3324/haematol.2008 This is an open-access paper.
The online version of this article has a Supplementary Appendix. BackgroundMutations in the PHF6 gene were recently described in patients with T-cell acute lymphoblastic leukemia and in those with acute myeloid leukemia. The present study was designed to determine the prevalence of PHF6 gene alterations in T-cell acute lymphoblastic leukemia. Design and MethodsWe analyzed the incidence and prognostic value of PHF6 mutations in 96 Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were screened by real-time quantitative polymerase chain reaction and array-based comparative genomic hybridization. Patients were also investigated for NOTCH1, FBXW7, WT1, and JAK1 mutations together with CALM-AF10, SET-NUP214, and SIL-TAL1 gene rearrangements. ResultsPHF6 mutations were identified in 11/59 (18.6%) adult and 2/37 (5.4%) pediatric cases of Tcell acute lymphoblastic leukemia, these incidences being significantly lower than those recently reported. Although PHF6 is X-linked and mutations have been reported to occur almost exclusively in male patients, we found no sex difference in the incidences of PHF6 mutations in Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were detected in 2/79 (2.5%) patients analyzed. NOTCH1 mutations, FBXW7 mutations, WT1 mutations, JAK1 mutations, SIL-TAL1 fusions, SET-NUP214 fusions and CALM-AF10 fusions were present in 44/96 (45.8%), 9/96 (9.4%), 4/96 (4.1%), 3/49 (6.1%), 9/48 (18.8%), 3/48 (6.3%) and 0/48 (0%) of patients, respectively. The molecular genetic markers most frequently associated with PHF6 mutations were NOTCH1 mutations (P=0.003), SET-NUP214 rearrangements (P=0.002), and JAK1 mutations (P=0.005). No differences in disease-free survival and overall survival between T-cell acute lymphoblastic leukemia patients with and without PHF6 mutations were observed in a short-term follow-up. ConclusionsOverall, these results indicate that, in T-cell acute lymphoblastic leukemia, PHF6 mutations are a recurrent genetic abnormality associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214.
Extramedullary relapse (EMR) of acute leukemia (AL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a contributor to post-transplantation mortality and remains poorly understood, especially the different characteristics of EMR in patients with acute myelogenous leukemia (AML) and those with acute lymphoblastic leukemia (ALL). To investigate the incidence, risk factors, and clinical outcomes of EMR for AML and ALL, we performed a retrospective analysis of 362 patients with AL who underwent allo-HSCT at the First affiliated Hospital of Soochow University between January 2001 and March 2012. Compared with patients with AML, those with ALL had a higher incidence of EMR (12.9% versus 4.6%; P = .009). The most common site of EMR was the central nervous system, especially in the ALL group. Multivariate analyses identified the leading risk factors for EMR in the patients with AML as advanced disease status at HSCT, hyperleukocytosis at diagnosis, history of extramedullary leukemia before HSCT, and a total body irradiation-based conditioning regimen, and the top risk factors for EMR in the patients with ALL as hyperleukocytosis at diagnosis, adverse cytogenetics, and transfusion of peripheral blood stem cells. The prognosis for EMR of AL is poor, and treatment options are very limited; however, the estimated 3-year overall survival (OS) was significantly lower in patients with AML compared with those with ALL (0 versus 18.5%; P = .000). The characteristics of post-allo-HSCT EMR differed between the patients with AML and those with ALL, possibly suggesting different pathogenetic mechanisms for EMR of AML and EMR of ALL after allo-HSCT; further investigation is needed.
We retrospectively analyzed 449 patients with AML under the WHO classification of AML 2008 and probed implications of this classification in diagnosis and treatment of acute myeloid leukemia with myelodysplasiarelated changes (AML-MRC) among them. The clinical presentations, biological features, treatments, and prognosis of patients diagnosed with AML-MRC were analyzed and compared with those of AML not otherwise specified (AML-NOS). In all patients, 115 (25.6%) were diagnosed as AML-MRC including 64 males and 51 females with median onset age of 48 years (range from 17 to 78). Their complete remission (CR) rate was 60.9% and relapse rate was 57.1%. The observed median overall survival (OS) and disease-free survival (DFS) were 10 and 5 months, respectively, which was significantly shorter than those of AML-NOS patients (P < 0.05). The prognosis of AML-MRC patients with myelodysplastic syndrome (MDS)-related cytogenetics sole was similar to those with history of MDS or myelodysplastic/myeloproliferative neoplasm (MDS/MPN). Patients with MDS-related cytogenetic abnormalities and/or history of MDS or MDS/MPN predisposed significantly shortened CR, OS, and DFS than AML-MRC patients with only multilineage dysplasia (MLD) and AML-NOS patients (P < 0.05). Multivariate analysis showed that age, cytogenetics, and history of MDS or MDS/MPN were independent prognostic factors. Patient diagnosed as AML-MRC presented distinctive clinical and biological features. Presence of MLD does not change the prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.