There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.
The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding-induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating "outside-in" signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis.
Tyrosine phosphorylation is tightly regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), and plays a critical role in malignant transformation and progression. While PTKs have a well-established role in regulating breast cancer growth, contribution of PTPs remains mostly unknown. Here, we report that the tyrosine phosphatase PTPH1 stimulates breast cancer growth through regulating vitamin D receptor (VDR) expression. PTPH1 was shown to be over-expressed in 49% of primary breast cancer and levels of its protein expression positively correlate with the clinic metastasis, suggesting its oncogenic activity. Indeed, PTPH1 promotes breast cancer growth by a mechanism independent of its phosphatase activity but dependent of its stimulatory effect on the nuclear receptor VDR protein expression and depletion of induced VDR abolishes the PTPH1 oncogenic activity. Additional analyses showed that PTPH1 binds VDR and increases its cytoplasmic accumulation leading to their mutual stabilization and stable expression of a nuclear localization deficient VDR abolishes the growth-inhibitory activity of the receptor independent of 1, 25-dihydroxyvitamin D3 (vitamin D3). These results reveal a new paradigm in which a protein tyrosine phosphatase may stimulate breast cancer growth through increasing cytoplasmic translocation of a nuclear receptor leading to their mutual stabilization.
Esophageal squamous cell carcinoma (ESCC) is 1 of the most common cancers worldwide. In our study, cDNA microarray comprising 14,803 genes was employed to identify gene-specific expression profile in 6 paired samples of ESCC. Nine genes identified were commonly upregulated and 36 downregulated in tumors, as compared to normal esophageal squamous epithelia. Among these genes, we found that 9 of the altered expression genes were related to arachidonic acid (AA) metabolism, such as annexin-I, annexin-II, S100A8, S100A10, S100P, glutathione peroxidase-3, phosphatidylcholine transfer protein, aldo-keto reductase family 1 and cyclooxygenase-2 (COX-2). To gain insights into the regulation of the AA metabolism pathway involved in the carcinogenesis of ESCC, we investigated the expression of 8 genes related to the AA metabolism by semiquantitative reverse transcript ( Esophageal cancer is 1 of the most lethal malignancies in the world. It exists in 2 main pathologic types, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EADC). ESCC is the predominant histologic subtype of esophageal cancer and characterized by high mortality rate and geographic differences in incidence. 1 It occurs at very high frequencies in some countries, including China and especially in the south side of the Taihang mountains on the borders of 3 provinces (Henan, Hebei and Shanxi). Due to the relatively late stage of diagnosis and the poor efficacy of treatment, 5-year survival rate is below 10%. 2 The development of better treatment modalities and better diagnostic and preventive approaches requires the understanding of the molecular mechanisms of the complex process of esophageal tumorigenesis. Genetic factors were speculated to be 1 of the most important causes for the high prevalence and familial aggregation of ESCC in China. 3 Previous studies showed that some of the complicated genetic alternation had been found in the tumorigenesis of esophagus, such as point mutations of p53 and p16; amplification of cycline D, c-myc, hst-1, int-2 and epidermal growth factor receptor; as well as allelic loss on chromosomes 3p, 5q, 9p21-22, 13q and 17p. 4 -7 But this is not sufficient to understand the common pathway of carcinogenesis and progression of ESCC. A previous study in our lab also revealed that a Mendelian autosomal recessive major gene underlying susceptibility to ESCC played a significant role in the etiology of ESCC in a moderate high-incidence area of northern China. 8 However, the molecular pathways involved in the pathogenesis of ESCC are poorly understood.Advances in cDNA microarray technologies have enabled the definition of thousands of genes' expression changes simultaneously. Previous studies have been successfully performed in ESCC. 9 -11 These studies have begun to provide valuable information to understand the development and progression of ESCC. In the present study, in order to uncover the molecular pathways involved in complicated biologic processes of the esophageal epithelium malignant transformation, we...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.