Proprioceptive training is a neurorehabilitation approach known to improve proprioceptive acuity and motor performance of a joint/limb system. Here, we examined if such learning transfers to the contralateral joints. Using a robotic exoskeleton, 15 healthy, right-handed adults (18–35 years) trained a visuomotor task that required making increasingly small wrist movements challenging proprioceptive function. Wrist position sense just-noticeable-difference thresholds (JND) and spatial movement accuracy error (MAE) in a wrist-pointing task that was not trained were assessed before and immediately as well as 24 h after training. The main results are: first, training reduced JND thresholds (− 27%) and MAE (− 33%) in the trained right wrist. Sensory and motor gains were observable 24 h after training. Second, in the untrained left wrist, mean JND significantly decreased (− 32%) at posttest. However, at retention the effect was no longer significant. Third, motor error at the untrained wrist declined slowly. Gains were not significant at posttest, but MAE was significantly reduced (− 27%) at retention. This study provides first evidence that proprioceptive-focused visuomotor training can induce proprioceptive and motor gains not only in the trained joint but also in the contralateral, homologous joint. We discuss the possible neurophysiological mechanism behind such sensorimotor transfer and its implications for neurorehabilitation.
Background Learning of a visuomotor task not only leads to changes in motor performance but also improves proprioceptive function of the trained joint/limb system. Such sensorimotor learning may show intra-joint transfer that is observable at a previously untrained degrees of freedom of the trained joint. In addition, it may transfer to the homologous joint of contralateral side. Objective Here, we examined if and to what extent such learning transfers to neighboring joints of the same limb and whether such transfer is observable in the motor as well as in the proprioceptive domain. Documenting such intra-limb transfer of sensorimotor learning holds promise for the neurorehabilitation of an impaired joint by training the neighboring joints. Methods Using a robotic exoskeleton, 15 healthy young adults (18–35 years) underwent a visuomotor training that required them to make continuous, increasingly precise, small amplitude wrist movements. Wrist and elbow position sense just-noticeable‐difference (JND) thresholds and spatial movement accuracy error (MAE) at wrist and elbow in an untrained pointing task were assessed before and immediately after, as well as 24 hours after training. Results First, all participants showed evidence of proprioceptive and motor learning in both trained and untrained joints. The mean JND threshold decreased significantly by 30% in trained wrist (M: 1.26° to 0.88°) and by 35% in untrained elbow (M: 1.96° to 1.28°). Second, mean MAE in untrained pointing task reduced by 20% in trained wrist and the untrained elbow. Third, after 24 hours the gains in proprioceptive learning persisted at both joint, while motor learning gains had decayed to such extent that they were no longer significant at the group level. Conclusion Our findings document that a one-time sensorimotor training induces rapid learning gains in proprioceptive acuity and untrained motor performance at the practiced joint. Importantly, these gains transfer almost fully to the neighboring, proximal joint/limb system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.