SARS-CoV-2 variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here, we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from COVID-19-infected individuals, followed by the Brazilian variant P.1 and the UK variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K and N501Y mutations in the receptor binding domain (RBD) of SARS-CoV-2. Crystal structural analysis of B.1.351 triple mutant (417N-484K-501Y) RBD complexed with monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptor for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which pose serious challenges to our current antibody therapies and vaccine protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.