With the gradual prolongation of the overall survival of cancer patients, the cardiovascular toxicity associated with oncology drug therapy and radiotherapy has attracted increasing attention. At present, the main methods to identify early cancer treatment-related cardiac dysfunction (CTRCD) include imaging examination and blood biomarkers. In this review, we will summarize the research progress of subclinical CTRCD-related blood biomarkers in detail. At present, common tumor therapies that cause CTRCD include: (1) Chemotherapy—The CTRCD induced by chemotherapy drugs represented by anthracycline showed a dose-dependent characteristic and most of the myocardial damage is irreversible. (2) Targeted therapy—Cardiovascular injury caused by molecular-targeted therapy drugs such as trastuzumab can be partially or completely alleviated via timely intervention. (3) Immunotherapy—Patients developed severe left ventricular dysfunction who received immune checkpoint inhibitors have been reported. (4) Radiotherapy—CTRCD induced by radiotherapy has been shown to be significantly associated with cardiac radiation dose and radiation volume. Numerous reports have shown that elevated troponin and B-type natriuretic peptide after cancer treatment are significantly associated with heart failure and asymptomatic left ventricular dysfunction. In recent years, a few emerging subclinical CTRCD potential biomarkers have attracted attention. C-reactive protein and ST2 have been shown to be associated with CTRCD after chemotherapy and radiation. Galectin-3, myeloperoxidas, placental growth factor, growth differentiation factor 15 and microRNAs have potential value in predicting CTRCD. In this review, we will summarize CTRCD caused by various tumor therapies from the perspective of cardio-oncology, and focus on the latest research progress of subclinical CTRCD biomarkers.
Background: Tissue differentiation-inducing non-protein coding RNA (TINCR) has been shown to play a crucial role in pathogenesis of various types of human cancer including breast cancer (BC). The purpose of this study was to determine the potential prognostic value of serum lncRNA TINCR in BC. Methods: Quantitative reverse transcription PCR (qRT-PCR) was performed to detect serum lncRNA TINCR levels in 72 triple-negative BC (TNBC) patients, 105 non-TNBC patients, 60 benign breast disease patients and 86 healthy subjects. Results: The results showed that serum lncRNA TINCR level was significantly increased in BC, especially in TNBC. High circulating lncRNA TINCR was significantly correlated with worse clinicopathological features and clinical outcome of TNBC. Multivariate analysis revealed that serum lncRNA TINCR was an independent prognostic factor for overall survival of TNBC. However, little association was found between serum lncRNA TINCR and the prognosis of non-TNBC. Conclusions: Taken together, our findings demonstrate that serum lncRNA TINCR might be a useful novel and non-invasive biomarker for the prognosis prediction of TNBC.
InP QDs have shown a great potential as cadmium-free QDs alternatives in biomedical applications. It is essential to understand the biological fate and toxicity of InP QDs. In this study, we investigated the in vivo renal toxicity of InP/ZnS QDs terminated with different functional groups—hydroxyl (hQDs), amino (aQDs) and carboxyl (cQDs). After a single intravenous injection into BALB/c mice, blood biochemistry, QDs distribution, histopathology, inflammatory response, oxidative stress and apoptosis genes were evaluated at different predetermined times. The results showed fluorescent signals from QDs could be detected in kidneys during the observation period. No obvious changes were observed in histopathological detection or biochemistry parameters. Inflammatory response and oxidative stress were found in the renal tissues of mice exposed to the three kinds of QDs. A significant increase of KIM-1 expression was observed in hQDs and aQDs groups, suggesting hQDs and aQDs could cause renal involvement. Apoptosis-related genes (Bax, Caspase 3, 7 and 9) were up-regulated in hQDs and aQDs groups. The above results suggested InP/ZnS QDs with different surface chemical properties would cause different biological behaviors and molecular actions in vivo. The surface chemical properties of QDs should be fully considered in the design of InP/ZnS QDs for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.