Background. Long noncoding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of various cancer types; however, their roles in the development of invasive pituitary adenomas (PAs) remain to be investigated. Methods. lncRNA microarray analysis was performed for three invasive and three noninvasive PAs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and coexpression networks between lncRNA and mRNA were constructed. Furthermore, three differentially expressed lncRNAs were selected for validation in PA samples by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The diagnostic values of these three lncRNAs were further evaluated by a receiver operating characteristic (ROC) curve analysis. Results. A total of 8872 lncRNAs were identified in invasive and paired noninvasive PAs via lncRNA microarray analysis. Among these, the differentially expressed lncRNAs included 81 that were upregulated and 165 that were downregulated. GO enrichment and KEGG pathway analysis showed that these differentially expressed lncRNAs were associated with the posttranslational modifications of proteins. Furthermore, we performed target gene prediction and coexpression analysis. The interrelationships between the significantly differentially expressed lncRNAs and mRNAs were identified. Additionally, three differentially expressed lncRNAs were selected for validation in 41 PA samples by qRT-PCR. The expression levels of FAM182B, LOC105371531, and LOC105375785 were significantly lower in the invasive PAs than in the noninvasive PAs ( P < 0.05 ). These results were consistent with the microarray data. ROC curve analysis suggested that the expression levels of FAM182B and LOC105375785 could be used to distinguish invasive PAs from noninvasive PAs. Conclusion. Our findings demonstrated the expression patterns of lncRNAs in invasive PAs. FAM182B and LOC105375785 may be involved in the invasiveness of PAs and serve as new candidate biomarkers for the diagnosis of invasive PAs.
To estimate the prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and to evaluate the associations between thyroid parameters, MAFLD and liver brosis in euthyroid patients with newly diagnosed type 2 diabetes mellitus (T2DM). MethodsOverall, 689 patients with newly diagnosed T2DM and 110 subjects without diabetes were included. All the participants were euthyroid, and were categorized as non-MAFLD and MAFLD. Demographic information, biochemical parameters, and serum thyroid hormones were collected. The thyroid hormone sensitivity indices were calculated. MAFLD was de ned according to abdominal ultrasound and clinical manifestations. Noninvasive brosis indices were calculated to identify advanced liver brosis. ResultsThe prevalence of MAFLD was signi cantly higher in patients with T2DM than in subjects without diabetes.Levels of free triiodothyronine (FT3) and FT3 to free thyroxine (FT4) ratio were signi cantly higher in subjects with MAFLD. In patients with T2DM, levels of thyroid stimulating hormone (TSH), Thyroid feedback quantilebased index (TFQI FT3 ) calculated using FT3 and TSH, thyrotroph T3 resistance index (TT3RI) and thyrotroph T4 resistance index (TT4RI) were signi cantly higher in subjects with MAFLD. The prevalence of MAFLD increased with the rise of FT3, FT3/FT4, TSH, and sensitivity to thyroid hormone indices (TFQI FT3 , TT3RI, and TT4RI).Positive correlations were signi cant between FT3, TFQI FT3 and MAFLD. But after further adjusted for BMI and HOMA-IR, the correlations were not signi cant. The incidence of advanced brosis tended to increase as the rise of TSH and sensitivity to thyroid hormone indices (TFQI FT3 , TT3RI, and TT4RI). ConclusionMAFLD was prevalent in euthyroid patients with newly diagnosed T2DM. Higher normal FT3, TSH and impaired sensitivity to thyroid hormones are associated with increased risk of MAFLD.
Mitochondrial dysfunction-induced apoptosis plays a crucial role in the progression of diabetic cardiomyopathy (DCM). Sestrin2 is an important oxidative stress response protein and is involved in the maintenance of mitochondrial function, especially under stress. The aim of the present study was to investigate the role of Sestrin2 in DCM and to explore the underlying mechanisms. H9c2 cardiomyocytes were induced with high glucose (HG) medium (33 mmol/l glucose) for an in vitro DCM model. C57BL/6 mice were induced for the in vivo DCM model by intraperitoneal streptozotocin injection. H9c2 cardiomyocytes were exposed to HG and infected with lentiviruses to express Sestrin2 short hairpin RNA (shRNA). The study found that cell viability and mitochondrial function were impaired while cell apoptosis and oxidative stress were increased in DCM. Sestrin2 was significantly upregulated in myocardial tissues of DCM mice and H9c2 cardiomyocytes in HG conditions. Downregulation of Sestrin2 increased cell viability, decreased cell apoptosis, and attenuated oxidative stress in H9c2 cells exposed to HG. Moreover, HG-induced mitochondrial injury was alleviated by Sestrin2 silencing. In conclusion, our finding indicated that the inhibition of enhanced Sestrin2 expression ameliorates cardiac injury in DCM, which might be largely attributed to the restoration of mitochondrial function.
BackgroundsLong non-coding RNAs (lncRNAs) play important roles in tumorigenesis and progression of various cancer types; however, their roles in the development of invasive pituitary adenomas (PAs) remain to be investigated.MethodslncRNA microarray was performed in three invasive and three noninvasive PAs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and coexpression networks between lncRNA and mRNA were constructed. Furthermore, three differentially expressed lncRNAs were selected for validation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in PA samples. The diagnostic values of these three lncRNAs were further evaluated by receiver operating characteristic (ROC) analysis.ResultsA total of 8872 lncRNAs were identified in invasive and paired noninvasive PAs using lncRNA microarray. Among these, the differentially expressed lncRNAs included 81 that were upregulated and 165 that were downregulated. GO enrichment and KEGG pathway analysis showed that these differentially expressed lncRNAs were associated with post-translational modifications of proteins. Furthermore, we performed target gene prediction and coexpression analysis. The interrelationships between the lncRNAs and mRNAs with significant differential expression were identified. Additionally, three differentially expressed lncRNAs were selected for validation in 41 PA samples by qRT-PCR. The expression levels of FAM182B, LOC105371531, and LOC105375785 in the invasive PAs were significantly (P < 0.05) lower than in the noninvasive PAs, and these results were consistent with the microarray data. ROC analysis suggested that FAM182B and LOC105375785 expression levels could be used to distinguish invasive PAs from noninvasive PAs.ConclusionOur findings demonstrated the lncRNAs expression patterns in invasive PAs. Thus, FAM182B and LOC105375785 may be involved in the invasiveness of PAs and serve as new candidate biomarkers for the diagnosis of invasive PAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.