Age is an important ecological tool in wildlife conservation. However, it is difficult to estimate in most animals, including felines—most of whom are endangered. Here, we developed the first DNA methylation-based age-estimation technique—as an alternative to current age-estimation methods—for two feline species that share a relatively long genetic distance with each other: domestic cat (Felis catus; 79 blood samples) and an endangered Panthera, the snow leopard (Panthera uncia; 11 blood samples). We measured the methylation rates of two gene regions using methylation-sensitive high-resolution melting (MS-HRM). Domestic cat age was estimated with a mean absolute deviation (MAD) of 3.83 years. Health conditions influenced accuracy of the model. Specifically, the models built on cats with chronic kidney disease (CKD) had lower accuracy than those built on healthy cats. The snow leopard-specific model (i.e. the model that resets the model settings for snow leopards) had a better accuracy (MAD = 2.10 years) than that obtained on using the domestic cat model directly. This implies that our markers could be utilised across species, although changing the model settings when targeting different species could lead to better estimation accuracy. The snow leopard-specific model also successfully distinguished between sexually immature and mature individuals.
Although most felids have an exclusive carnivore diet, the presence of plant matter in scat has been reported among various species. This indicates that there may be an adaptive significance to the conservation of plant-eating behavior in felid evolution. Some studies have hypothesized that felids consume plants for self-medication or as a source of nutrition. In addition, it is thought that plant intake helps them to excrete hairballs, however, no scientific work has confirmed these effects. Thus, the objective of this study is to investigate the relationship between plant intake and hair evacuation in felid species. We selected snow leopards ( Panthera uncia ) as the study species because they have longer and denser hair than other felids. The behavior of 11 captive snow leopards was observed and scat samples from eight of them and two other captive individuals were analyzed. Snow leopards evacuate hair possibly by vomiting and excreting in scats. The frequency of plant-eating and vomiting and the amount of hair and plant in scat were evaluated. We found that the frequency of vomiting was much lower than the frequency of plant-eating. In addition, there was no significant relationship between the amount of plant matter contained in scats and the amount of hair in scats. Contrary to the common assumption, our results indicate that plant intake has little effect on hair evacuation in felid species.
Age is an essential trait for understanding the ecology and management of wildlife. A conventional method of estimating age in wild animals is counting annuli formed in the cementum of teeth. This method has been used in bears despite some disadvantages, such as high invasiveness and the requirement for experienced observers. In this study, we established a novel age estimation method based on DNA methylation levels using blood collected from 49 brown bears of known ages living in both captivity and the wild. We performed bisulfite pyrosequencing and obtained methylation levels at 39 cytosine‐phosphate‐guanine (CpG) sites adjacent to 12 genes. The methylation levels of CpGs adjacent to four genes showed a significant correlation with age. The best model was based on DNA methylation levels at just four CpG sites adjacent to a single gene, SLC12A5, and it had high accuracy with a mean absolute error of 1.3 years and median absolute error of 1.0 year after leave‐one‐out cross‐validation. This model represents the first epigenetic method of age estimation in brown bears, which provides benefits over tooth‐based methods, including high accuracy, less invasiveness, and a simple procedure. Our model has the potential for application to other bear species, which will greatly improve ecological research, conservation, and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.