Peritoneal metastasis of gastric cancer (PMGC) is incurable and thus has an extremely poor prognosis. We have found, however, that locoregionally administered trastuzumab armed with astatine‐211 (211At‐trastuzumab) is effective against human epidermal growth factor receptor 2 (HER2)‐positive PMGC in a xenograft mouse model. We first observed that 211At‐trastuzumab can specifically bind and effectively kill NCI‐N87 (N87) cells, which are HER2‐positive human metastatic GC cells, both in vitro and in s.c. tumors. We established a PMGC mouse model using N87 xenografts stably expressing luciferase to test α‐particle radioimmunotherapy with 211At‐trastuzumab against PMGC. Biodistribution analysis in this PMGC mouse model revealed that the i.p. administration of 211At‐trastuzumab (1 MBq) was a more efficient means of delivery of 211At into metastatic tumors than i.v. injection; the maximum tumor uptake with i.p. administration was over 60% injected dose per gram of tissue (%ID/g) compared to approximately 18%ID/g with i.v. injection. Surprisingly, a single i.p. injection of 211At‐trastuzumab (1 MBq) was sufficient to completely eradicate intraperitoneally disseminated HER2‐positive GC xenografts in two of six treated mice by inducing DNA double‐strand breaks, and to drastically reduce the tumor burden in another three mice. No bodyweight loss, leukocytopenia, or significant biochemical changes in liver or kidney function were observed in the treatment group. Accordingly, locoregionally administered 211At‐trastuzumab significantly prolonged the survival time of HER2‐positive PMGC mice compared with control treatments. Our results provide a proof‐of‐concept demonstration that locoregional therapy with 211At‐trastuzumab may offer a new treatment option for HER2‐positive PMGC.
(111)In-labeled trastuzumab modified with nuclear localizing signal (NLS) peptides ((111)In-trastuzumab-NLS) efficiently delivers an Auger electron (AE) emitter (111)In into the cell nucleus and is thus a promising radiopharmaceutical in AE radioimmunotherapy (AE-RIT) for targeted killing of HER2-positive cancer. However, further improvement of its therapeutic efficacy is required. In this study, the authors show a transcriptomic approach to identify potential targets for enhancing the cytotoxic effects of (111)In-trastuzumab-NLS. They generated two types of (111)In-trastuzumab-NLS harboring different numbers of NLS peptides, (111)In-trastuzumab-NLS-S and -L. These radioimmunoconjugates (230 and 460 kBq) showed a significant higher cytotoxicity to SKBR3 human breast cancer cells overexpressing HER2 compared to (111)In-trastuzumab. Microarray analysis revealed that NF-kB-related genes (38 genes) were significantly changed in transcription by (111)In trastuzumab-NLS-L (230 kBq) treatment. Quantitative reverse transcription polymerase chain reaction confirmed the microarray data by showing transcriptional alternation of selected NF-κB target genes in cells treated with (111)In-trastuzumab-NLS-L. Interestingly, bortezomib, a drug known as a NF-κB modulator, significantly enhanced the cytotoxicity of (111)In-trastuzumab-NLS-L in SKBR3 cells. Taken together, the transcriptome data suggest the possibility that the modulation of NF-kB signaling activity is a molecular signature of (111)In-trastuzumab-NLS and coadministration of bortezomib may be efficacious in enhancement of AE-RIT with (111)In-trastuzumab-NLS.
Synovial sarcoma (SS) is a rare yet refractory soft‐tissue sarcoma that predominantly affects young adults. We show in a mouse model that radioimmunotherapy (RIT) with an α‐particle emitting anti‐Frizzled homolog 10 (FZD10) antibody, synthesized using the α‐emitter radionuclide astatine‐211 (211At‐OTSA101), suppresses the growth of SS xenografts more efficiently than the corresponding β‐particle emitting anti‐FZD10 antibody conjugated with the β‐emitter yettrium‐90 (90Y‐OTSA101). In biodistribution analysis, 211At was increased in the SS xenografts but decreased in other tissues up to 1 day after injection as time proceeded, albeit with a relatively higher uptake in the stomach. Single 211At‐OTSA101 doses of 25 and 50 μCi significantly suppressed SS tumor growth in vivo, whereas a 50‐μCi dose of 90Y‐OTSA101 was needed to achieve this. Importantly, 50 μCi of 211At‐OTSA101 suppressed tumor growth immediately after injection, whereas this effect required several days in the case of 90Y‐OTSA101. Both radiolabeled antibodies at the 50‐μCi dosage level significantly prolonged survival. Histopathologically, severe cellular damage accompanied by massive cell death was evident in the SS xenografts at even 1 day after the 211At‐OTSA101 injection, but these effects were relatively milder with 90Y‐OTSA101 at the same timepoint, even though the absorbed doses were comparable (3.3 and 3.0 Gy, respectively). We conclude that α‐particle RIT with 211At‐OTSA101 is a potential new therapeutic option for SS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.