There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.
The discovery of the early biomarkers and development of accurate diagnostic methods are effective prevention strategies for drug-induced kidney impairment.
Laminin-α2 deficient congenital muscular dystrophy (CMD) is an autosomal recessive disorder characterized by severe muscular dystrophy, which is typically associated with abnormal white matter. In this study, we assessed 43 CMD patients with typical white matter abnormality and laminin-α2 deficiency (complete or partial) diagnosed by immunohistochemistry to determine the clinical and molecular genetic characteristics of laminin-α2 deficient CMD. LAMA2 gene mutation analysis was performed by direct sequencing of genomic DNAs. Exonic deletion or duplication was identified by multiplex ligation-dependent probe amplification (MLPA) and verified by high-density oligonucleotide-based CGH microarrays. Gene mutation analysis revealed 86 LAMA2 mutations (100%); 15 known and 37 novel. Among these mutations, 73.9% were nonsense, splice-site or frameshift and 18.8% were deletions of one or more exons. Genetic characterization of affected families will be valuable in prenatal diagnosis of CMD in the Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.