Tomato plants are highly affected by diverse diseases. A timely and accurate diagnosis plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically convolutional neural networks (CNNs), have achieved extraordinary results in many applications, including the classification of plant diseases. This work focused on fine-tuning based on the comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset used for the experiments is contained by nine different classes of tomato diseases and a healthy class from PlantVillage. The models were evaluated through a multiclass statistical analysis based on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify and protect tomatoes from the diseases mentioned.
Among the current challenges of the Smart City, traffic management and maintenance are of utmost importance. Road surface monitoring is currently performed by humans, but the road surface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. In addition, while said obstacles ought to be signalized according to specific road regulation, they are not always correctly labeled. Therefore, we developed a novel method for the detection of road abnormalities (i.e., speed bumps). This method makes use of a gyro, an accelerometer, and a GPS sensor mounted in a car. After having the vehicle cruise through several streets, data is retrieved from the sensors. Then, using a cross-validation strategy, a genetic algorithm is used to find a logistic model that accurately detects road abnormalities. The proposed model had an accuracy of 0.9714 in a blind evaluation, with a false positive rate smaller than 0.018, and an area under the receiver operating characteristic curve of 0.9784. This methodology has the potential to detect speed bumps in quasi real-time conditions, and can be used to construct a real-time surface monitoring system.
Major Depression Disease has been increasing in the last few years, affecting around 7 percent of the world population, but nowadays techniques to diagnose it are outdated and inefficient. Motor activity data in the last decade is presented as a better way to diagnose, treat and monitor patients suffering from this illness, this is achieved through the use of machine learning algorithms. Disturbances in the circadian rhythm of mental illness patients increase the effectiveness of the data mining process. In this paper, a comparison of motor activity data from the night, day and full day is carried out through a data mining process using the Random Forest classifier to identified depressive and non-depressive episodes. Data from Depressjon dataset is split into three different subsets and 24 features in time and frequency domain are extracted to select the best model to be used in the classification of depression episodes. The results showed that the best dataset and model to realize the classification of depressive episodes is the night motor activity data with 99.37% of sensitivity and 99.91% of specificity.
In the area of recognition and classification of children activities, numerous works have been proposed that make use of different data sources. In most of them, sensors embedded in children’s garments are used. In this work, the use of environmental sound data is proposed to generate a recognition and classification of children activities model through automatic learning techniques, optimized for application on mobile devices. Initially, the use of a genetic algorithm for a feature selection is presented, reducing the original size of the dataset used, an important aspect when working with the limited resources of a mobile device. For the evaluation of this process, five different classification methods are applied, k-nearest neighbor (k-NN), nearest centroid (NC), artificial neural networks (ANNs), random forest (RF), and recursive partitioning trees (Rpart). Finally, a comparison of the models obtained, based on the accuracy, is performed, in order to identify the classification method that presents the best performance in the development of a model that allows the identification of children activity based on audio signals. According to the results, the best performance is presented by the five-feature model developed through RF, obtaining an accuracy of 0.92, which allows to conclude that it is possible to automatically classify children activity based on a reduced set of features with significant accuracy.
The Word Health Organization (WHO) declared in March 2020 that we are facing a pandemic designated as COVID-19, which is the acronym of coronavirus disease 2019, caused by a new virus know as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In Mexico, the first cases of COVID-19, was reported by the Secretary of Health on 28 February 2020. More than sixteen thousand cases and more than fifteen thousand deaths have been reported in Mexico, and it continues to rise; therefore, this article proposes two online visualization tools (a web platform) that allow the analysis of demographic data and comorbidities of the Mexican population. The objective of these tools is to provide graphic information, fast and updated, based on dataset obtained directly from National Governments Health Secretary (Secretaría de Salud, SSA) which is daily refreshed with the information related to SARS-CoV-2. To allow a dynamical update and friendly interface, and approach with R-project, a well-known Open Source language and environment for statistical computing and Shiny package, were implemented. The dataset is loaded automatically from the latest version released by the federal government of Mexico. Users can choose to study particular groups determined by gender, entity, type of result (positive, negative, pending outcome) and comorbidity. The image results are plots that can be instantly interpreted and supported by the text summary. This tool, in addition to being a consultation for the general public, is useful in Public Health to facilitate the visualization of the data, allowing its timely interpretation due to the changing nature of COVID-19, it can even be used for decision-making by leaders, for the benefit of the health of the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.