The new axially pre-compressed macro-fiber composite bimorph (MFC-PBP) can produce large displacement and output power. However, it has the property of strong rate-dependent hysteresis nonlinearity, which challenges the displacement tracking control of morphing structures. In this paper, the least-squares support vector machine (LS-SVM) is applied to model the rate-dependent hysteresis of MFC-PBP. Compared with the predicated results of the series model of the Bouc–Wen model and Hammerstein model (BW-H), the LS-SVM model achieved higher predication accuracy and better generalization ability. Based on the LS-SVM hysteresis compensation model, with the support vector pruning, the displacement tracking feedforward compensator is obtained. In order to improve the displacement tracking accuracy, the LS-SVM feedforward compensator combined with the proportional and integral (PI) controller and the feedforward plus feedback control experiment is carried out on the displacement tracking of MFC-PBP. The test results show that the feedforward plus feedback displacement tracking control loop based on the LS-SVM model also has a higher displacement tracking accuracy than that based on the inverse model of BW-H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.