Hereditary multiple exostoses (EXT; MIM 133700) is an autosomal dominant bone disorder. It is genetically heterogeneous with at least three chromosomal loci: EXT1 on 8q24.1, EXT2 on 11p11, and EXT3 on 19p. EXT1 and EXT2, the two genes responsible for EXT1 and EXT2, respectively, have been cloned. Recently, three other members of the EXT gene family, named the EXT-like genes (EXTL: EXTL1, EXTL2, and EXTL3), have been isolated. EXT1, EXT2, and the three EXTLs are homologous with one another. We have identified the intron-exon boundaries of EXTL1 and EXTL3 and analyzed EXT1, EXT2, EXTL1, and EXTL3, in 36 Chinese families with EXT, to identify underlying disease-related mutations in the Chinese population. Of the 36 families, five and 12 family groups have mutations in EXT1 and EXT2, respectively. No disease-related mutation has been found in either EXTL1 or EXTL2, although one polymorphism has been detected in EXTL1. Of the 15 different mutations (three families share a common mutation in EXT2), 12 are novel. Most of the mutations are either frameshift or nonsense mutations (12/15). These mutations lead directly or indirectly to premature stop codons, and the mutations generate truncated proteins. This finding is consistent with the hypothesis that the development of EXT is mainly attributable to loss of gene function. Missense mutations are rare in our families, but these mutations may reflect some functionally crucial regions of these proteins. EXT1 is the most frequent single cause of EXT in the Caucasian population in Europe and North America. It accounts for about 40% of cases of EXT. Our study of 36 EXT Chinese families has found that EXT1 seems much less common in the Chinese population, although the frequency of the EXT2 mutation is similar in the Caucasian and Chinese populations. Our findings suggest a possibly different genetic spectrum of this disease in different populations.
Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with amyotrophic lateral sclerosis (ALS). Among more than 100 ALS-associated SOD1 mutations, premature termination codon (PTC) mutations exclusively occur in exon 5, the last exon of SOD1. The molecular basis of ALS-associated toxicity of the mutant SOD1 is not fully understood. Here, we show that nonsense-mediated mRNA decay (NMD) underlies clearance of mutant mRNA with a PTC in the non-terminal exons. To further define the crucial ALS-associated SOD1 fragments, we designed and tested an exon-fusion approach using an artificial transgene SOD1T116X that harbors a PTC in exon 4. We found that the SOD1T116X transgene with a fused exon could escape NMD in cellular models. We generated a transgenic mouse model that overexpresses SOD1T116X. This mouse model developed ALS-like phenotype and pathology. Thus, our data have demonstrated that a ‘mini-SOD1’ of only 115 amino acids is sufficient to cause ALS. This is the smallest ALS-causing SOD1 molecule currently defined. This proof of principle result suggests that the exon-fusion approach may have potential not only to further define a shorter ALS-associated SOD1 fragment, thus providing a molecular target for designing rational therapy, but also to dissect toxicities of other proteins encoded by genes of multiple exons through a ‘gain of function’ mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.