CoC(x) nanoparticles encapsulated in carbon shells were synthesized using a pulsed plasma in liquid ethanol. This is the first time that monolithic cubic phase cobalt carbide nanoparticles have been obtained. X-ray diffraction refinement of the nanoparticles showed that the lattice parameter of prepared cubic phase cobalt carbide is larger than that of CoC(x) (44-0962) and cubic phase Co (15-0806 and 01-1259). The x-ray absorption fine structure spectra near the Co K-edge of the synthesized sample indicated differences from commercial metallic cobalt and cobalt oxide samples. High resolution transmission electron microscopy revealed that a thin carbon coating covered the surface of the nanoparticles. These carbon layers might isolate core CoC(x) material from the outside environment, and allow functionalization by carboxyl groups for the further purpose of targeted drug delivery. The obtained CoC(x)@C particles, with a crystallite size of about 10 nm confirmed by the electron microscope, aggregate into 20-40 nm secondary particles in distilled water as shown by dynamic light scattering, and possess high saturation magnetization of about 120 emu g(-1). The sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay and defragmentation of deoxyribonucleic acid on MCF-7 cells after incubation with particles indicate relatively low cytotoxicity of CoC(x)@C nanoparticles, compared with micro-sized and nano-sized metallic cobalt particles and commonly used iron oxides. For the small sized CoC(x)@C particles, the release of cobalt ions was checked by a chelation method with ethylenediaminetetraacetic acid solution to be at a very low level compared with other reference materials.
Atherosclerosis will lead to stenosis/occlusion in the lumen of various arteries of living body. This can lead various conditions including myocardial infarction, cerebral infarction/aneurysm and peripheral artery disease. Ang II is believed to be an important regulatory peptide involved in maintaining cardiovascular homeostasis and pathogenesis of various cardiovascular diseases. Matrix metalloproteinase's (MMPs), adhesion molecules and plasminogen systems are involved in the inflammatory reaction of various blood vessels as well as pathogenesis of cerebro vasuclar disease in apo E(-/-) mice during angiotensin II injection. The present study analyses the role of ang II in development of cerebral aneurysm and also evaluated the mRNA levels of MMPs, adhesion molecules, plasminogen systems and peroxisome proliferators-associated receptors in the brain of apo E(-/-) mouse during the progression of cerebral aneurysm and ischemic conditions. Also, this study evaluates the role of dietary β carotene on cerebrovascular disease. Serum total cholesterol (TC), Low density lipoprotein (LDL) and triglyceride (TG) levels were significantly increased in angiotensin II treated animals and further β carotene supplementation reduces TC but does not affect the triglyceride and LDL levels. Circulating levels of macrophages were significantly increased in angiotensin treated animals and further beta carotene supplementation significantly reduced the circulating macrophages. Cerebro meningeous aneurysm, subarachnoid haemorrhage, multiple foci of infarction, necrosis and infiltration of inflammatory cells were observed in the cerebral hemispheres of ang II treated animals, however, infarction size were reduced and no aneurysm, inflammatory foci was observed in β carotene treated animals. Real time analysis showed down regulation of mRNA levels of MMP 2, uPA, PAI, PPAR-A, MCSF1 and up regulation of tPA and MCP-1 in the brain during the progression of cerebral aneurysm and β carotene supplementation to bring to normal expression levels of all the candidate genes for cerebrovascular diseases. Based on above results, Ang II may induced cerebral aneurysm, ischemia/infarction on brain through RAS system by down regulating the mRNA levels of MMP 2, uPA, PAI, PPAR-A, MCSF1 and up regulating tPA and MCP-1 and β carotene attenuates the disease condition and bring down to normal expression levels of above genes.
Fe and Ni magnetic nanoparticles coated by carbon were synthesized between the Fe–Fe and Ni–Ni metal electrodes, submerged in ethanol using pulsed plasma in a liquid method. Iron coated carbon (Fe@C) nanoparticles have an average size of 32 nm, and Ni@C nanoparticles are 40 nm. Obtained samples exhibit a well-defined crystalline structure of the inner Fe and Ni cores, encapsulated in the graphitic carbon coatings. Cytotoxicity studies performed on the MCF-7 (breast cancer) cell line showed small toxicity about 88–74% at 50 µg/mL of Fe@C and Ni@C nanoparticles, which can be significant criteria for use them in medical cancer treatment. In addition, appropriate sizes, good magnetic properties and well-organized graphitic carbon coatings are highlight merits of Fe@C and Ni@C nanoparticles synthesized by pulsed plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.