The initial phase in the development of a migraine is still poorly understood. Here, we describe a previously unknown signaling pathway between stressed neurons and trigeminal afferents during cortical spreading depression (CSD), the putative cause of migraine aura and headache. CSD caused neuronal Pannexin1 (Panx1) megachannel opening and caspase-1 activation followed by high-mobility group box 1 (HMGB1) release from neurons and nuclear factor κB activation in astrocytes. Suppression of this cascade abolished CSD-induced trigeminovascular activation, dural mast cell degranulation, and headache. CSD-induced neuronal megachannel opening may promote sustained activation of trigeminal afferents via parenchymal inflammatory cascades reaching glia limitans. This pathway may function to alarm an organism with headache when neurons are stressed.
Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15-lipoxygenase was increased in the ischemic mouse brain, and 12/15-lipoxygenase co-localized with a marker for oxidized lipids MDA2. This co-localization was also detected in the brain of two human stroke patients, where it also coincided with increased apoptosis-inducing factor, AIF. A novel inhibitor of 12/15-lipoxygenase, LOXBlock-1 protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days post stroke, with improved behavioral parameters. Even when treatment was delayed until at least four hours after onset of ischemia, LOXBlock-1 was protective. Furthermore, it reduced tPA-associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15-lipoxygenase as a viable strategy for first line stroke treatment.
Caspases play an important role as mediators of cell death in acute and chronic neurological disorders. Although peptide inhibitors of caspases provide neuroprotection, they have to be administered intracerebroventricularly because they cannot cross the blood-brain barrier (BBB). Herein, we present a nanocarrier system that can transfer chitosan nanospheres loaded with N-benzyloxycarbonylAsp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone (Z-DEVD-FMK), a relatively specific caspase-3 inhibitor, across BBB. Caspase-3 was chosen as a pharmacological target because of its central role in cell death. Polyethylene glycol-coated nanospheres were conjugated to an anti-mouse transferrin receptor monoclonal antibody (TfRMAb) that selectively recognizes the TfR type 1 on the cerebral vasculature. We demonstrate with intravital microscopy that this nanomedicine is rapidly transported across the BBB without being measurably taken up by liver and spleen. Pre-or post-treatment (2 h) with intravenously injected Z-DEVD-FMK-loaded nanospheres dose dependently decreased the infarct volume, neurological deficit, and ischemia-induced caspase-3 activity in mice subjected to 2 h of MCA occlusion and 24 h of reperfusion, suggesting that they released an amount of peptide sufficient to inhibit caspase activity. Similarly, nanospheres inhibited physiological caspase-3 activity during development in the neonatal mouse cerebellum on postnatal day 17 after closure of the BBB. Neither nanospheres functionalized with TfRMAb but not loaded with Z-DEVD-FMK nor nanospheres lacking TfRMAb but loaded with Z-DEVD-FMK had any effect on either paradigm, suggesting that inhibition of caspase activity and subsequent neuroprotection were due to efficient penetration of the peptide into brain. Thus, chitosan nanospheres open new and exciting opportunities for brain delivery of biologically active peptides that are useful for the treatment of CNS disorders.
Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl 3 -soaked filter paper strip (0.3¾1 mm 2 ) on the duramater over the trunk of the distal MCA through a cranial window for 3 minutes induced intraarterial thrombus without damaging the peri-arterial cortex in the mouse. This caused a rapid regional cerebral blood flow decrease within 10 minutes and total occlusion of the MCA segment under the filter paper in 17±2 minutes, which resulted in a typical cortical infarct of 27 ± 4 mm 3 at 24 hours and moderate sensorimotor deficits. There was no significant hemispheric swelling or hemorrhage or mortality at 24 hours. Reperfusion was obtained in half of the mice with tissue plasminogen activator, which allowed live monitoring of clot lysis along with restoration of tissue perfusion and MCA flow. In conclusion, this relatively simple and noninvasive stroke model is easy to perform under a microscope, making it suitable for live imaging and thrombolysis studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.