In this study, we deal with the problem of constructing semianalytical solution of mathematical problems including space-time-fractional linear and nonlinear differential equations. The method, called Shehu Variational Iteration Method (SVIM), applied in this study is a combination of Shehu transform (ST) and variational iteration method (VIM). First, ST is utilized to reduce the time-fractional differential equation with fractional derivative in Liouville-Caputo sense into an integer-order differential equation. Later, VIM is implemented to construct the solution of reduced differential equation. The convergence analysis of this method and illustrated examples confirm that the proposed method is one of best procedures to tackle space-time-fractional differential equations.
The motivation of this study is to determine the analytic solution of initial boundary value problem including time fractional differential equation with Neumann boundary conditions in one dimension. By making use of seperation of variables, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem.
The aim of this study is to analyze nonlinear Liouville-Caputo time-fractional problems by a new technique which is a combination of the iterative and ARA transform methods and is denoted by IAM. First, the ARA transform method and its inverse are utilized to get rid of time fractional derivative. Later, the iterative method is applied to establish the solution of the problem in infinite series form. The main advantages of this method are that it converges to analytic solution of the problem rapidly and implementation of method is easy. Finally, outcomes of the illustrative examples prove the efficiency and accuracy of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.