Background. MicroRNAs are a type of small noncoding RNA molecules that have been shown to control gene expression in eukaryotes. Aberrant expression and alteration of miRNAs may be responsible for human diseases including cancer. An miR16-1 (C > T) + 7 gene mutation has been previously found in familial chronic lymphocytic leukemia patients, one of which reported a family history of breast cancer. miR16-1 regulates the expression of bcl-2, which is important in retinoblastoma, and is located in a genomic region that is frequently lost in nasopharyngeal and hepatocellular carcinomas (HCCs). Therefore, miR16-1 may be potentially important in the etiology of several solid tumors. To understand the power of the miR16-1 (C > T) + 7 mutation as a prognostic and diagnostic risk factor, we investigated the mutation in patients with seven different types of cancer including 188 with breast, 102 with ovarian, and 22 nasopharyngeal carcinomas, 96 HCC, 872 chronic myeloid leukemia (CML), 39 chronic lymphocytic leukemia (CLL), and 46 retinoblastoma cases from three different ethnic groups and of hereditary and sporadic etiology. Methods. 5′Nuclease TaqMan SNP genotyping assay was used to detect the miR16-1 gene C > T substitution. Results. The miR16-1 (C > T) + 7 substitution was not detected in any of the groups studied. Conclusions. Considering the large scale of our study, the representation of different ethnicities and levels of hereditary risk, we conclude that the miR-16-1 (C > T) + 7 mutation is not a good diagnostic or prognostic indicator of risk for the cancers tested.
The tumor suppressor LKB1 gene is a master kinase and inhibits mammalian target of rapamycin (mTOR) by activating AMP-activated protein kinase (AMPK) and AMPK-related kinases. LKB1 is a critical intermediate in the mTOR signaling pathway, and mutations of the LKB1 gene have been implicated in the development of different tumor types. Recent evidence indicates that LKB1 alterations contribute to cancer progression and metastasis by modulating vascular endothelial growth factor (VEGF) production. The Ras homolog enriched in brain (RHEB) protein is a component of the mTOR pathway and functions as a positive regulator of mTOR. However, the mechanisms and effectors of RHEB in mTOR signaling are not well known. In this study, we analyzed the expression of RHEB and HIF1α genes in correlation with LKB1 gene mutations. All coding exons and exon/intron boundaries of the LKB1 gene were analyzed by direct sequencing in 77 renal cell carcinoma (RCC) tumors and 62 matched noncancerous tissue samples. In 51.6 % of the patients, ten different mutations including four novel mutations in the coding sequences and six single nucleotide substitutions in the introns were observed. Rheb and HIF1α expression levels were not statistically different between the tumor and corresponding noncancerous tissue samples. However, expression of the Rheb gene was upregulated in the tumor samples carrying the intron 2 (+24 G→T) alteration. Association between the gene expression and tissue protein levels was also analyzed for HIF1α in a subgroup of patients, and a high correlation was confirmed. Our results indicate that the LKB1 gene is frequently altered in RCC and may play a role in RCC progression.
Retinoblastoma is a tumor of the embryonic neural retina in young children. The DNA methyltransferase 1 (DNMT1) gene has been demonstrated to be transcriptionally activated in cells lacking retinoblastoma 1 (RB1). Thus, there is a direct interaction between DNMT1 and RB1 in vivo. The present study hypothesized that uncontrolled DNMT1, DNMT2 and DNMT3 expression may lead to a high level of global genome methylation causing a second hit or where both alleles are altered, in RB1 and/or inactivation of other genes in retinal cells. To test this, the global genome methylation levels were analyzed in 69 patients with retinoblastoma, as well as 26 healthy siblings and 18 healthy unrelated children as the control groups. Peripheral blood and tumor tissue samples were obtained from 32 patients. The expression levels of DNMT genes were also determined in cell lines. Based on the median levels of global genome methylation in patients, higher genome-wide methylation levels in peripheral blood were associated with a 3.33-fold increased risk for retinoblastoma in patients compared with all healthy controls (95% confidence interval, 0.98-11.35; P<0.0001). The level of global genome methylation and the expression of DNMT genes were increased in the WERI-RB-1 cell line, which has a mutated RB1 gene, compared with a wild-type RB1-expressing cell line. These results supported the hypothesis that epigenetic alterations, as well as mutations in RB1, may be associated with the oncogenesis and inheritance of retinoblastoma. The repression of genes that interact with RB1, such as the DNMT gene family, may be important in patients with retinoblastoma with alterations in RB1, and may serve a role in the treatment and regression of retinoblastoma.
BRCA1 and BRCA2 genes are responsible for 5-10% of breast and ovarian cancer cases. However, the vast majority of ovarian and breast cancer cases do not display the hereditary form of the disease. Estrogen-metabolizing genes may also contribute to the predisposition of breast or ovarian cancer. Polymorphic variants of the estrogen-metabolizing gene, CYP17, have been associated with the risk of hormone-related cancers. In this study we investigated the CYP17 polymorphisms in ovarian cancer patients harboring mutations in the BRCA1 and BRCA2 genes, patients displaying familial characteristics but not carrying mutations and patients with sporadic ovarian cancer. Association between the allele frequencies, the CYP17 genotype and tumor characteristics or clinical parameters was evaluated. Our data suggest evidence for an association between ovarian cancer risk and the CYP17 genotype in the subgroup of patients with familial disease in whom no mutations in the BRCA genes are found. Although there were no statistically significant differences in the genotype distribution between the control group and the subgroup of patients with BRCA mutations, the frequency of the CYP17 A2 allele was significantly higher in the subgroup of patients without BRCA mutations. We found a four- to eightfold higher risk in ovarian cancer patients with family history but without BRCA mutations. Our data indicate that the CYP17 A2 allele polymorphism may confer an increased risk and can provide a biomarker for ovarian cancer patients in whom no mutations in the BRCA genes are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.