This work describes a genetic cluster involving POLH, and, particularly unexpected, with two independent founder mutations, including one that likely originated in Europe.
An important issue affecting Genome-Wide Association Studies (GWAS) with deep phenotyping (multiple correlated phenotypes) is determining the suitable family-wise significance threshold. Straightforward family-wise correction (Bonferroni) of p <0.05 for 4.3 million genotypes and 335 phenotypes would give a threshold of p < 3.46E-11. This would be too conservative because it assumes all tests are independent. The effective number of tests, both phenotypic and genotypic, must be adjusted for the correlations between them.
Spectral decomposition of the phenotype matrix and LD-based correction of the number of tested SNPs, are currently used to determine an effective number of tests. In this paper, we compare these calculated estimates with permutation-determined family-wise significance thresholds. Permutations are performed by shuffling individual IDs of the genotype vector for this dataset, to preserve correlation of phenotypes.
Our results demonstrate that the permutation threshold is influenced by minor allele frequency (MAF) of the SNPs, and by the number of individuals tested. For the more common SNPs (MAF > 0.1), the permutation family-wise threshold was in close agreement with spectral decomposition methods. However, for less common SNPs (0.05
Horizontal gene transfer (HGT) has a major impact on the evolution of prokaryotic genomes, as it allows genes evolved in different contexts to be combined in a single genome, greatly enhancing the ways evolving organisms can explore the gene content space and adapt to the environment. A systematic analysis of HGT in a large number of genomes is of key importance in understanding the impact of HGT in the evolution of prokaryotes. We developed a method for the detection of genes that potentially originated by HGT based on the comparison of BLAST scores between homologous genes to 16S rRNA-based phylogenetic distances between the involved organisms. The approach was applied to 697 prokaryote genomes and estimated that in average approximately 15% of the genes in prokaryote genomes originated by HGT, with a clear correlation between the proportion of predicted HGT genes and the size of the genome. The methodology was strongly supported by evolutionary relationships, as tested by the direct phylogenetic reconstruction of many of the HGT candidates. Studies performed with Escherichia coli W3110 genome clearly show that HGT proteins have fewer interactions when compared to those predicted as vertical inherited, an indication that the number of protein partners imposes limitations to horizontal transfer. A detailed functional classification confirms that genes related to protein translation are vertically inherited, whereas interestingly, transport and binding proteins are strongly enriched among HGT genes. Because these genes are related to the cell exchange with their environment, their transfer most likely contributed to successful adaptation throughout evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.