The reaction of pentaerythritol tetranitrate reductase with reducing and oxidizing substrates has been studied by stopped-flow spectrophotometry, redox potentiometry, and X-ray crystallography. We show in the reductive half-reaction of pentaerythritol tetranitrate (PETN) reductase that NADPH binds to form an enzyme-NADPH charge transfer intermediate prior to hydride transfer from the nicotinamide coenzyme to FMN. In the oxidative half-reaction, the two-electron-reduced enzyme reacts with several substrates including nitroester explosives (glycerol trinitrate and PETN), nitroaromatic explosives (trinitrotoluene (TNT) and picric acid), and ␣,-unsaturated carbonyl compounds (2-cyclohexenone). Oxidation of the flavin by the nitroaromatic substrate TNT is kinetically indistinguishable from formation of its hydride-Meisenheimer complex, consistent with a mechanism involving direct nucleophilic attack by hydride from the flavin N5 atom at the electrondeficient aromatic nucleus of the substrate. The crystal structures of complexes of the oxidized enzyme bound to picric acid and TNT are consistent with direct hydride transfer from the reduced flavin to nitroaromatic substrates. The mode of binding the inhibitor 2,4-dinitrophenol (2,4-DNP) is similar to that observed with picric acid and TNT. In this position, however, the aromatic nucleus is not activated for hydride transfer from the flavin N5 atom, thus accounting for the lack of reactivity with 2,4-DNP. Our work with PETN reductase establishes further a close relationship to the Old Yellow Enzyme family of proteins but at the same time highlights important differences compared with the reactivity of Old Yellow Enzyme. Our studies provide a structural and mechanistic rationale for the ability of PETN reductase to react with the nitroaromatic explosive compounds TNT and picric acid and for the inhibition of enzyme activity with 2,4-DNP.
In vitro studies have shown that insulin-like growth factor (IGF) is a mitogen for breast cancer cells. However, the associations of plasma IGF-I with tumor histopathology in high-risk groups need further investigation. We hypothesize that plasma IGF-I and serum IGFBP3 concentrations in breast cancer patients may provide useful information on the progression of their disease, and determine the probability of recurrence and survival. We have carried out a retrospective study on 130 minority breast cancer patients. Plasma IGF-I and serum IGFBP3 were correlated with tumor histopathology, menopausal status, treatment modality, recurrence rates, and probability of survival. Plasma IGF-I and serum IGFBP3 were measured by radioimmunoassay. Our studies show that breast cancer patients have elevated plasma IGF-I and serum IGFBP3 levels. In addition we observed the following: IGF-I did not correlate with age and nodal stage. IGF-I and IGFBP3 increased with tumor size (T4). IGF-I did not correlate with estrogen receptor status, but did increase in progesterone-receptor-positive patients. IGF-I levels were higher in premenopausal patients and in women with cancer recurrence. Tamoxifen reduced IGF-I levels significantly and reduced the risk of recurrence. The survival probability was greater in patients with plasma IGF-I levels <120 ng/ml. In conclusion, lowering of plasma IGF-I may offer the following benefits: (a) reduce the risk of developing breast cancer in high-risk groups; (b) slow the progression of breast cancer in patients at early stages of cancer; (c) lower the risk of recurrence, and (d) increase the probability of survival.
The structure of pentaerythritol tetranitrate (PETN) reductase in complex with the nitroaromatic substrate picric acid determined previously at 1.55 Å resolution indicated additional electron density between the indole ring of residue Trp-102 and the nitro group at C-6 of picrate. The data suggested the presence of an unusual bond between substrate and the tryptophan side chain. Herein, we have extended the resolution of the PETN reductase-picric acid complex to 0.9 Å. This high-resolution analysis indicates that the active site is partially occupied with picric acid and that the anomalous density seen in the original study is attributed to the population of multiple conformational states of Trp-102 and not a formal covalent bond between the indole ring of Trp-102 and picric acid. The significance of any interaction between Trp-102 and nitroaromatic substrates was probed further in solution and crystal complexes with wild-type and mutant (W102Y and W102F) enzymes. Unlike with wild-type enzyme, in the crystalline form picric acid was bound at full occupancy in the mutant enzymes, and there was no evidence for multiple conformations of active site residues. Solution studies indicate tighter binding of picric acid in the active sites of the W102Y and W102F enzymes. Mutation of Trp-102 does not impair significantly enzyme reduction by NADPH, but the kinetics of decay of the hydride-Meisenheimer complex are accelerated in the mutant enzymes. The data reveal that decay of the hydride-Meisenheimer complex is enzyme catalyzed and that the final distribution of reaction products for the mutant enzymes is substantially different from wild-type enzyme. Implications for the mechanism of high explosive degradation by PETN reductase are discussed.Pentaerythritol tetranitrate (PETN) 1 reductase is a member of the old yellow enzyme (OYE) family of flavoproteins and was purified from a strain of Enterobacter cloacae (strain PB2) originally isolated on the basis of its ability to utilize nitrate ester explosives such as PETN and glycerol trinitrate (GTN) as sole nitrogen source (1). The structure of PETN reductase (2) is similar to that of OYE (3) and morphinone reductase (4), confirming the close evolutionary relationship with OYE and other FMN-dependent flavoprotein oxidoreductases inferred from sequence analysis of the genes encoding these enzymes (5, 6). Consistent with this close relationship is the ability of the OYE family of enzymes to reduce a variety of cyclic enones, including 2-cyclohexenone and steroids. Some steroids act as substrates, whereas others are potent inhibitors of these enzymes. PETN reductase, and the related orthologues from strains of Pseudomonas (7) and Agrobacterium (8), show reactivity against explosive substrates. PETN reductase degrades major classes of explosive, including nitroaromatic compounds (e.g. trinitrotoluene TNT) and nitrate esters (GTN and PETN) (9 -11). Degradation of TNT involves reductive hydride addition to the aromatic nucleus (Fig. 1). In the case of members of the old yellow enz...
Pentaerythritol tetranitrate (PETN) reductase was originally purified from a strain of Enterobacter cloacae (strain PB2) on the basis of its ability to utilize nitrate ester explosives such as PETN and glycerol trinitrate (GTN) as sole nitrogen source. Sequence analysis [1] and structural studies [2] The roles of His181, His184 and Tyr186 in PETN reductase have been examined by mutagenesis, spectroscopic and stopped-flow kinetics, and by determination of crystallographic structures for the Y186F PETN reductase and reduced wild-type enzyme-progesterone complex. Residues His181 and His184 are important in the binding of coenzyme, steroids, nitroaromatic ligands and the substrate 2-cyclohexen-1-one. The H181A and H184A enzymes retain activity in reductive and oxidative half-reactions, and thus do not play an essential role in catalysis. Ligand binding and catalysis is not substantially impaired in Y186F PETN reductase, which contrasts with data for the equivalent mutation (Y196F) in Old Yellow Enzyme. The structure of Y186F PETN reductase is identical to wild-type enzyme, with the obvious exception of the mutation. We show in PETN reductase that Tyr186 is not a key proton donor in the reduction of a ⁄ b unsaturated carbonyl compounds. The structure of two electron-reduced PETN reductase bound to the inhibitor progesterone mimics the catalytic enzyme-steroid substrate complex and is similar to the structure of the oxidized enzyme-inhibitor complex. The reactive C1-C2 unsaturated bond of the steroid is inappropriately orientated with the flavin N5 atom for hydride transfer. With steroid substrates, the productive conformation is achieved by orientating the steroid through flipping by 180°, consistent with known geometries for hydride transfer in flavoenzymes. Our data highlight mechanistic differences between Old Yellow Enzyme and PETN reductase and indicate that catalysis requires a metastable enzyme-steroid complex and not the most stable complex observed in crystallographic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.