This paper presents the result of research in developing a novel training model for Adaptive NeuroFuzzy Inference Systems (ANFIS). ANFIS integrates the learning ability of Artificial Neural Networks with the Takagi-Sugeno Fuzzy Inference System to approximate nonlinear functions. Therefore, it is considered as a Universal Estimator. The original algorithm used in ANFIS training process has a hybrid model that uses Steepest Decent Derivative; therefore, it inherits low convergence rate and local minima during training. In this study, a training algorithm is proposed that combines Bees Algorithm (BA) and Least Square Estimation (LSE) (BA-LSE). The local and global exploration of BA as integrates with the best-fit solution of the LSE improves current shortcomings of ANFIS training process. The proposed training algorithm is examined under three different scenarios of function approximation, time series prediction, and classification experiments in order to verify the promising improvements in the training process of ANFIS. The experimental results validate high generalization capabilities of the BA-LSE training algorithm in comparison to the original hybrid training model of ANFIS. The new training model also enhances local minima avoidance and has high convergence rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.