The NLRP3 inflammasome can be activated by diverse stimuli, including nigericin, uric acid crystals, amyloid-β fibrils, and extracellular ATP. The mitotic kinase NEK7 licenses NLRP3 inflammasome assembly and activation in the interphase. Here we report a 3.8-Å cryo-electron microscopy structure of inactive human NLRP3 in complex with NEK7. The earring-shaped Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
RAF family kinases are RAS-activated switches that initiate signaling through the MAP kinase cascade to control cellular proliferation, differentiation and survival 1-3 . RAF activity is tightly regulated, and inappropriate activation is a frequent cause of cancer [4][5][6] . At present, the structural basis for RAF regulation is poorly understood. Here we describe autoinhibited and active state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer, determined using cryo electron microscopy (cryo-EM). A 4.1Å resolution cryo-EM reconstruction reveals an inactive BRAF/MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain (CRD) occupies a central position that stabilizes this assembly, but the adjacent RASbinding domain (RBD) is poorly ordered and peripheral. The 14-3-3 cradle maintains Reprints and permissions information is available at www.nature.com/reprintsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http:// www.nature.com/authors/editorial_policies/license.html#terms *
Inflammasomes are supramolecular complexes that play key roles in immune surveillance. This is accomplished by the activation of inflammatory caspases, which leads to the proteolytic maturation of interleukin 1β (IL-1β) and pyroptosis. Here, we show that nucleotide-binding domain, leucine-rich repeat, and pyrin domain–containing protein 3 (NLRP3)- and pyrin-mediated inflammasome assembly, caspase activation, and IL-1β conversion occur at the microtubule-organizing center (MTOC). Furthermore, the dynein adapter histone deacetylase 6 (HDAC6) is indispensable for the microtubule transport and assembly of these inflammasomes both in vitro and in mice. Because HDAC6 can transport ubiquitinated pathological aggregates to the MTOC for aggresome formation and autophagosomal degradation, its role in NLRP3 and pyrin inflammasome activation also provides an inherent mechanism for the down-regulation of these inflammasomes by autophagy. This work suggests an unexpected parallel between the formation of physiological and pathological aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.