In this work we use the ab initio calculations to study the intercalation of lithium (Li) atoms in the channels of the single-wall boron nitride nanotube (BNNT) bundles. The relaxed structure as well as the electronic band structure were obtained. Results reveals that Li insertion modifies the band structure by shifting the Fermi energy to conduction band. The Li atoms act as electron donors and this modifies the electronic properties of the BNNT bundles due the intercalation. The electronic properties changes induced in the effects are dependent on Li atom numbers per nanotube.
In this work, we present a theoretical study of the origin of the spatial structures in the conventional magneto-optical trap by using a numerical model based on the solutions of the equations of motion of trapped atoms, in the limit where the radiation trapping force is not relevant. Some results relating to the comparison between the experimental and theoretical data are reported. Also, we show that this same analysis can be employed to describe the spatial structures formation in atomic beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.