Envirotyping is an essential technique used to unfold the non-genetic drivers associated with the phenotypic adaptation of living organisms. Here we introduce the EnvRtype R package, a novel toolkit developed to interplay large-scale envirotyping data (enviromics) into quantitative genomics. To start a user-friendly envirotyping pipeline, this package offers: (1) remote sensing tools for collecting (get_weather and extract_GIS functions) and processing ecophysiological variables (processWTH function) from raw environmental data at single locations or worldwide; (2) environmental characterization by typing environments and profiling descriptors of environmental quality (env_typing function), in addition to gathering environmental covariables as quantitative descriptors for predictive purposes (W_matrix function); and (3) identification of environmental similarity that can be used as an enviromic-based kernel (env_typing function) in whole-genome prediction (GP), aimed at increasing ecophysiological knowledge in genomic best-unbiased predictions (GBLUP) and emulating reaction norm effects (get_kernel and kernel_model functions). We highlight literature mining concepts in fine-tuning envirotyping parameters for each plant species and target growing environments. We show that envirotyping for predictive breeding collects raw data and processes it in an eco-physiologically-smart way. Examples of its use for creating global-scale envirotyping networks and integrating reaction-norm modeling in GP are also outlined. We conclude that EnvRtype provides a cost-effective envirotyping pipeline capable of providing high quality enviromic data for a diverse set of genomic-based studies, especially for increasing accuracy in GP across untested growing environments.
Exploring the symbiosis between plants and plant-growth-promoting bacteria (PGPB) is a new challenge for sustainable agriculture. Even though many works have reported the beneficial effects of PGPB in increasing plant resilience for several stresses, its potential is not yet widely explored. One of the many reasons is the differential symbiosis performance depending on the host genotype. This opens doors to plant breeding programs to explore the genetic variability and develop new cultivars with higher responses to PGPB interaction and, therefore, have higher resilience to stress. Hence, we aimed to study the genetic architecture of the symbiosis between PGPB and tropical maize germplasm, using a public association panel and its impact on plant resilience. Our findings reveal that the synthetic PGPB population can modulate and impact root architecture traits, improve resilience to nitrogen stress, and 37 regions were significant for controlling the symbiosis between PGPB and tropical maize. In addition, we found two overlapping SNPs in the GWAS analysis indicating strong candidates for further investigations. Furthermore, genomic prediction analysis with genomic relationship matrix computed using only significant SNPs obtained from GWAS analysis substantially increased the predictive ability for several traits endorsing the importance of these genomic regions for the response of PGPB. Finally, the public tropical panel reveals a significant genetic variability to the symbiosis with the PGPB and can be a source of alleles to improve plant resilience.
Selection of hybrid coffee plants coming from crosses between divergent populations is particularly relevant for the success of breeding programs. This study aimed to outline the best selection strategy in a hybrid population of Coffea canephora var. kouilou and robusta by estimating intrapopulation genetic parameters. Twenty full-sib progenies obtained by North Caroline II were installed in a randomized complete blocks design, with one plant per elementary plot. The following traits were evaluated: vegetative vigor, reaction to rust, plant height, diameter of canopy projection, maturity time, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.