Infrared thermography is a nondestructive evaluation technique in which the specimen surface is thermally stimulated to produce a temperature difference between "sound" (free of defects) areas and eventual defective regions. It is well known that the thermographic methods based on the thermal contrast are strongly affected by non-uniform heating at the surface. Hence, thermal contrast-based results considerably depend on the chosen reference point. The differential absolute contrast (DAC) method was developed to eliminate the need of determining a reference point by defining the thermal contrast with respect to an "ideal" sound area. The DAC technique is based on the 1D solution of the Fourier diffusion equation for homogeneous and semi-infinite materials stimulated with a Dirac heat pulse. Although very useful at early times, this assumption considerably decreases DAC accuracy when the heat front approaches the sample rear face. We propose a modified DAC version by explicitly introducing the sample thickness using the thermal quadrupoles theory. We demonstrate that taking into account the sample thickness, the DAC validity range considerably extends for long times after excitation while preserving its performance for short times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.