Abstract-Worldwide, the monitoring of pests and diseases plays a fundamental role in the agricultural sustainability; making necessary the development of new tools for early pest detection. In this sense, we present a software application for detecting damage in tobacco (Nicotiana tabacum L.) leaves caused by the fungus of blue mold (Peronospora tabacina Adam). This software application processes tobacco leaves images using a pattern recognition technique known as Artificial Neural Network. For the training and testing stages, a total of 40 images of tobacco leaves were used. The experimentation carried out shows that the developed model has accuracy higher than 97% and there is no significant difference with a visual analysis carried out by experts in tobacco crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.