The regulation of AMH production by follicular cells is poorly understood. The purpose of this study was to determine the role of the oocyte-secreted factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on AMH production in primary human cumulus cells. Cumulus cells from IVF patients were cultured with a combination of GDF9, BMP15, recombinant FSH, and specific signaling inhibitors. Stimulation with GDF9 or BMP15 separately had no significant effect on AMH mRNA levels. In contrast, simultaneous stimulation with GDF9 and BMP15 (G+B) resulted in a significant increase in AMH mRNA expression. Increasing concentration of G+B (0.6, 2.5, 5 and 10 ng/ml) stimulated AMH in a dose-dependent manner, showing a maximal effect at 5 ng/ml. Western blot analyses revealed an average 16-fold increase in AMH protein levels in cells treated with G+B when compared to controls. FSH co-treatment decreased the stimulation of AMH expression by G+B. The stimulatory effect of G+B on the expression of AMH was significantly decreased by inhibitors of the SMAD2/3 signaling pathway. These findings show for the first time that AMH production is regulated by oocyte-secreted factors in primary human cumulus cells. Moreover, our novel findings establish that the combination of GDF9 + BMP15 potently stimulates AMH expression.
Luteinizing hormone and human chorionic gonadotropin (hCG) bind to the luteinizing hormone/ chorionic gonadotropin receptor (LHCGR). LHCGR is required to maintain corpus luteum function but the mechanisms involved in the regulation of LHCGR in human luteal cells remain incompletely understood. This study aimed to characterize the expression of LHCGR mRNA in primary human luteinized granulosa cells (hLGCs) obtained from patients undergoing in vitro fertilization and to correlate LHCGR expression with the response of hLGCs to hCG by assessing the expression of genes known to be markers of hCG actions. The results show that LHCGR expression is low in freshly isolated cells but recovers rapidly in culture and that hCG maintains LHCGR expression, suggesting a positive feedback loop. The activity of a LHCGR-LUC reporter increased in cells treated with hCG but not with follicle-stimulating hormone. Treatment with hCG also stimulated the expression of genes involved in steroidogenesis in a time-dependent manner. LHCGR promoter expression was found to be regulated by SP1, which we show is highly expressed in hLGCs. Moreover, SP1 inhibition prevented the stimulation of steroidogenic genes and the increase in LHCGR-LUC reporter activity by hCG. Finally, we provide evidence that a complex formed by SP1 and GATA4 may play a role in the maintenance of LHCGR expression. This report reveals the mechanisms involved in the regulation of the LHCGR and provides experimental data demonstrating that the proximal region of the LHCGR promoter is sufficient to drive the expression of this gene in primary hLGCs.
Context Human granulosa cells (hGCs) produce and respond to insulin-like growth factor 2 (IGF2) but whether the oocyte participates in IGF2 regulation in humans is unknown. Objective To determine the role of oocyte-secreted factors (OSFs) such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in IGF2 production by hGCs. Design Primary human cumulus GCs in culture. Setting University infertility center. Patients or Other Participants GCs of women undergoing in vitro fertilization. Intervention(s) Cells treated with GDF9 and BMP15 in the presence of vehicle, follicle-stimulating hormone (FSH), dibutyryl cyclic-AMP (dbcAMP), or mothers against decapentaplegic homolog (SMAD) inhibitors. Main Outcome Measure(s) Quantification of mRNA, protein, promoter activity, and DNA methylation. Results FSH stimulation of IGF2 (protein and mRNA) was significantly potentiated by the GDF9 and BMP15 (G+B) combination (P < 0.0001) in a concentration-dependent manner showing a maximal effect at 5 ng/mL each. However, GDF9 or BMP15 alone or in combination (G+B) have no effect on IGF2 in the absence of FSH. FSH stimulated IGF2 promoter 3 activity, but G+B had no effect on promoter activity. G+B potentiated IGF2 stimulation by cAMP. SMAD3 inhibitors inhibited G+B enhancement of IGF2 stimulation by FSH (P < 0.05) but had no effect on FSH induction. Moreover, inhibition of insulin-like growth factor receptor partially blocked G+B potentiation of FSH actions (P < 0.009). Conclusions For the first time, we show that the oocyte actively participates in the regulation of IGF2 expression in hGCs, an effect that is mediated by the specific combination of G+B via SMAD2/3, which in turn target mechanisms downstream of the FSH receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.