Does K-Means reasonably divides the data into k groups is an important question that arises when one works on Image Segmentation? Which color space one should choose and how to ascertain that the k we determine is valid? The purpose of this study was to explore the answers to aforementioned questions. We perform K-Means on a number of 2-cluster, 3-cluster and k-cluster color images (k>3) in RGB and L*a*b* feature space. Ground truth (GT) images have been used to accomplish validation task. Silhouette analysis supports the peaks for given k-cluster image. Model accuracy in RGB space falls between 30% and 55% while in L*a*b* color space it ranges from 30% to 65%. Though few images used, but experimentation proves that K-Means significantly segment images much better in L*a*b* color space as compared to RGB feature space.
COVID-19 is a transferable disease inherited from the SARS-CoV-2 virus. A total of 594 million people have been infected, and 6.4 million human beings have died due to COVID-19. The fastest way to diagnose the disease is by radiography. Deep learning has been the most popular technique for image classification during the last decade. This paper aims to examine the contributions of machine learning for the detection of COVID-19 using Deep Learning and explores the overall application of convolutional neural networks of some famous state-of-the-art deep learning pre-trained models. In this research, our objective is to explore the various image classification strategies for CXIs and the application of deep learning models for optimization and feature selection. The study presented in this article shows that the accuracy of deep learning models when detecting COVID-19 on the basis of chest X-ray images ranges from 93 percent to above 99 percent.
A murine model of myelofibrosis in tibia was used in a co-clinical trial to evaluate segmentation methods for application of image-based biomarkers to assess disease status. The dataset (32 mice with 157 3D MRI scans including 49 test–retest pairs scanned on consecutive days) was split into approximately 70% training, 10% validation, and 20% test subsets. Two expert annotators (EA1 and EA2) performed manual segmentations of the mouse tibia (EA1: all data; EA2: test and validation). Attention U-net (A-U-net) model performance was assessed for accuracy with respect to EA1 reference using the average Jaccard index (AJI), volume intersection ratio (AVI), volume error (AVE), and Hausdorff distance (AHD) for four training scenarios: full training, two half-splits, and a single-mouse subsets. The repeatability of computer versus expert segmentations for tibia volume of test–retest pairs was assessed by within-subject coefficient of variance (%wCV). A-U-net models trained on full and half-split training sets achieved similar average accuracy (with respect to EA1 annotations) for test set: AJI = 83–84%, AVI = 89–90%, AVE = 2–3%, and AHD = 0.5 mm–0.7 mm, exceeding EA2 accuracy: AJ = 81%, AVI = 83%, AVE = 14%, and AHD = 0.3 mm. The A-U-net model repeatability wCV [95% CI]: 3 [2, 5]% was notably better than that of expert annotators EA1: 5 [4, 9]% and EA2: 8 [6, 13]%. The developed deep learning model effectively automates murine bone marrow segmentation with accuracy comparable to human annotators and substantially improved repeatability.
Quantum computing has emerged as a new dimension with various applications in different fields like robotic, cryptography, uncertainty modeling etc. On the other hand, nature inspired techniques are playing vital role in solving complex problems through evolutionary approach. While evolutionary approaches are good to solve stochastic problems in unbounded search space, predicting uncertain and ambiguous problems in real life is of immense importance. With improved forecasting accuracy many unforeseen events can be managed well. In this paper a novel algorithm for Fuzzy Time Series (FTS) prediction by using Quantum concepts is proposed in this paper. Quantum Evolutionary Algorithm (QEA) is used along with fuzzy logic for prediction of time series data. QEA is applied on interval lengths for finding out optimized lengths of intervals producing best forecasting accuracy. The algorithm is applied for forecasting Taiwan Futures Exchange (TIAFEX) index as well as for Bitcoin crypto currency time series data as a new approach. Model results were compared with many preceding algorithms.
MRI scanner captures the skull along with the brain and the skull needs to be removed for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR Images is significantly a core area in medical applications. It is a complicated task to segment an image for skull stripping manually. It is not only time consuming but expensive as well. An automated skull stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping methods are used in practice. In this review paper, many soft-computing segmentation techniques have been discussed. The purpose of this research study is to review the existing literature to compare the existing traditional and modern methods used for skull stripping from Brain MR images along with their merits and demerits. The semi-systematic review of existing literature has been carried out using the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-computing methods proposed, experimented with, or applied in practice for effective skull stripping. Popular databases with desired data of Brain MR Images have also been identified, categorized and discussed. Moreover, CPU and GPU based computer systems and their specifications used by different researchers for skull stripping have also been discussed. In the end, the research gap has been identified along with the proposed lead for future research work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.