Underwater sound absorption materials with a stable performance at various hydrostatic pressures are important for marine applications. However, most studies about underwater sound absorption materials only focused on the performance at atmospheric hydrostatic pressure, while ignoring the influence of various hydrostatic pressures. Aiming to improve the underwater sound absorption stability of a metamaterial at various hydrostatic pressures, different structures and a Nelder–Mead algorithm with an acoustic-structure fully coupled finite element method (FEM) model are developed to optimize the structure of the metamaterial at various hydrostatic pressures. In this numerical modeling, the metamaterial is a PDMS matrix embedded with periodic cylinders. Firstly, the effect of hydrostatic pressure on the metamaterial is evaluated in the frequency range [0, 8 kHz]. Secondly, different cases are designed to improve the underwater sound absorption stability at various hydrostatic pressures, including different cylinder radii, different distances between the air cylinder and the steel backing, and different void shapes. Then two layers of air and/or steel cylinders are introduced to further improve sound absorption performance under various hydrostatic pressures. The results indicate that PDMS with two layers of air cylinders have the optimal sound absorption stability performance under various hydrostatic pressures, which can be attributed to the top layer of air cylinders absorbing the main deformation. Lastly, the optimization algorithm significantly improves the sound absorption performance of the metamaterials at various hydrostatic pressures. This combination of an optimistic algorithm and FEM can guide the design of underwater sound absorption metamaterials at various hydrostatic pressures.
Any surface immersed in sea water will suffer from marine fouling, including underwater sound absorption coatings. Traditional underwater sound absorption coatings rely heavily on the use of toxic, biocide-containing paints to combat biofouling. In this paper, an environmentally-friendly nanocomposite with integrated antifouling and underwater sound absorption properties was fabricated by adopting MWCNTs-COOH and SiO2 into PDMS at different ratios. SEM, FTIR and XPS results demonstrated MWCNTs were mixed into PDMS, and the changes in elements were also analyzed. SiO2 nanoparticles in PDMS decreased the tensile properties of the coating, while erosion resistance was enhanced. Antibacterial properties of the coatings containing MWCNTs-COOH and SiO2 at a ratio of 1:1, 1:3, and 1:5 reached 62.02%, 72.36%, and 74.69%, respectively. In the frequency range of 1500–5000 Hz, the average sound absorption coefficient of PDMS increased from 0.5 to greater than 0.8 after adding MWCNTs-COOH and SiO2, which illustrated that the addition of nanoparticles enhanced the underwater sound absorption performance of the coating. Incorporating MWCNTs-COOH and SiO2 nanoparticles into the PDMS matrix to improve its sound absorption and surface antifouling properties provides a promising idea for marine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.