High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use singlecell transcriptomics, electron microscopy, whole-cell patch-clamp electrophysiology and calcium imaging to demonstrate that neuron-glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified through gap junction-mediated tumor interconnections forming an electrically-coupled network. Glioma membrane depolarization assessed with in vivo optogenetics promotes proliferation, while pharmacologically or genetically blocking electrochemical signaling inhibits glioma xenograft growth and extends mouse survival. Emphasizing positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in gliomainfiltrated brain. Together, these findings indicate that synaptic and electrical integration in neural circuits promotes glioma progression.
SUMMARY Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Summary High-grade gliomas (HGG) are a devastating group of cancers, representing the leading cause of brain tumor-related death in both children and adults. Therapies aimed at mechanisms intrinsic to the glioma cell have translated to only limited success; effective therapeutic strategies will need to also target elements of the tumor microenvironment that promote glioma progression. We recently demonstrated that neuronal activity robustly promotes the growth of a range of molecularly and clinically distinct HGG types, including adult glioblastoma (GBM), anaplastic oligodendroglioma, pediatric GBM, and diffuse intrinsic pontine glioma (DIPG)1. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway1. However, neuroligin-3 necessity to glioma growth, proteolytic mechanism of secretion and further molecular consequences in glioma remain to be clarified. Here, we demonstrate a striking dependence of HGG growth on microenvironmental neuroligin-3, elucidate signaling cascades downstream of neuroligin-3 binding in glioma and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. Neuroligin-3 stimulates numerous oncogenic pathways, including early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes including upregulation of numerous synapse-related genes in glioma cells. Neuroligin-3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent release of neuroligin-3 into the tumor microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting neuroligin-3 secretion, which could prove transformative for HGG therapy.
Numerous mechanism-based anticancer drugs that target the phosphatidylinositol 3-kinase (PI3K) pathway are in clinical trials. However, it remains challenging to assess responses by traditional imaging methods. Here, we show for the first time the efficacy of hyperpolarized 13 C magnetic resonance spectroscopy (MRS) in detecting the effect of PI3K inhibition by monitoring hyperpolarized [1-13 C]lactate levels produced from hyperpolarized [1-13 C]pyruvate through lactate dehydrogenase (LDH) activity. In GS-2 glioblastoma cells, PI3Kinhibition by LY294002 or everolimus caused hyperpolarized lactate to drop to 42 ± 12% and to 76 ± 5%, respectively. In MDA-MB-231 breast cancer cells, hyperpolarized lactate dropped to 71 ± 15% after treatment with LY294002. These reductions were correlated with reductions in LDH activity to 48 ± 4%, 63 ± 4%, and 69 ± 12%, respectively, and were associated with a drop in levels of LDHA mRNA and LDHA and hypoxia-inducible factor-1α proteins. Supporting these findings, tumor growth inhibition achieved by everolimus in murine GS-2 xenografts was associated with a drop in the hyperpolarized lactate-to-pyruvate ratio detected by in vivo MRS imaging, whereas an increase in this ratio occurred with tumor growth in control animals. Taken together, our findings illustrate the application of hyperpolarized 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.