The habenula is a small, bilateral brain structure located at the dorsal end of the diencephalon. This structure sends projections to the dopaminergic striatum and receives inputs from the limbic forebrain, making the habenula a unique modulator of cross-talk between these brain regions. Despite strong interest in the habenula during the seventies and eighties (Herkenham and Nauta, 1977; Beckstead, 1979; Beckstead et al., 1979; Herkenham and Nauta, 1979; Caldecott-Hazard et al., 1988), interest waned due to lack of a clearly identifiable functional role. Following Matsumoto and Hikosaka's seminal work on the lateral habenula as a predictor of negative reward in monkeys, the habenula has undergone a resurgence of scientific interest. Matsumoto and Hikosaka demonstrated an increase in habenular neuron firing when monkeys did not receive an expected juice reward (Matsumoto and Hikosaka, 2007). Studies have shown that increased habenular activity inactivates dopaminergic cells in the Rostromedial Tegmental Nucleus (RMTg) through GABAergic mechanisms (Jhou et al., 2009a,b). Additional studies link habenular activity to the regulation of serotonin and norepinephrine, suggesting the habenula modulates multiple brain systems (Strecker and Rosengren, 1989; Amat et al., 2001). These discoveries ushered in a series of new studies that have refocused attention on the lateral habenula and the importance of this small brain structure (Bianco and Wilson, 2009; Jhou et al., 2009a; Matsumoto and Hikosaka, 2009; Sartorius et al., 2010; Savitz et al., 2011). Recently, Geisler and Trimble reviewed this renewed interest in: The Lateral Habenula: No Longer Neglected (Geisler and Trimble, 2008). While the lateral habenula (LHb) has been extensively studied, the anatomically and histochemically distinct medial habenula (MHb) remains largely understudied. This short review argues that the MHb is functionally important and should be studied more aggressively.
Electronic cigarettes (e-cigarettes) are nicotine-delivery devices that are increasingly used, especially by young people. Because e-cigarettes lack many of the substances found in regular tobacco, they are often perceived as a safer smoking alternative, especially in high-risk situations such as pregnancy. However, studies suggest that it is exposure to nicotine that is most detrimental to prenatal development. The authors studied perceptions of tobacco and e-cigarette health risks using a multiple-choice survey. To study the perceived safety of e-cigarettes versus tobacco cigarettes, 184 modified Global Health Youth Surveys (WHO, http://www.who.int/tobacco/surveillance/gyts/en/) were completed electronically or on paper. Age range, smoking status, and perceptions about tobacco cigarettes and e-cigarettes were studied. The results verified that younger people use e-cigarettes more than older people. Tobacco cigarettes were perceived as more harmful than e-cigarettes to health in general, including lung cancer and pregnancy. Although more research is necessary, the authors postulate that the perception that e-cigarettes are safer during pregnancy may induce pregnant women to use these devices more freely. Given that nicotine is known to cause fetal harm, pregnant mothers who smoke e-cigarettes could cause even greater harm to the fetus because e-cigarettes are perceived as being safer than tobacco cigarettes. Until more data about the effects of nicotine during pregnancy are available, the authors advocate for labeling of e-cigarettes as potentially harmful, at least during pregnancy.
We employed an EEG paradigm manipulating predictive context to dissociate the neural dynamics of anticipatory mechanisms. Subjects either detected random targets or targets preceded by a predictive sequence of three distinct stimuli. The last stimulus in the 3-stimulus sequence (decisive stimulus) did not require any motor response but 100% predicted a subsequent target event. We show that predictive context optimizes target processing via the deployment of distinct anticipatory mechanisms at different times of the predictive sequence. Prior to the occurrence of the decisive stimulus, enhanced attentional preparation was manifested by reductions in the alpha oscillatory activities over visual cortices, resulting in facilitation of processing of the decisive stimulus. Conversely, the subsequent 100% predictable target event did not reveal deployment of attentional preparation in the visual cortices, but elicited enhanced motor preparation mechanisms, indexed by an increased contingent negative variation (CNV) and reduced mu oscillatory activities over motor cortices before movement onset. The present results provide evidence that anticipation operates via different attentional and motor preparation mechanisms by selectively pre-activating task-dependent brain areas as predictability gradually increases.
There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, by comparing event-related potentials (ERPs) to attended and ignored sounds with ERPs to these same sounds when attention was equally distributed to all sounds. In control subjects, we observed 2 late frontally distributed ERP components: a transient facilitatory component occurring from 150 to 250 ms after sound onset; and an inhibitory component onsetting at 250 ms. Only the facilitatory component was affected in patients with LPFC damage: this component was absent when attending to sounds delivered in the ear contralateral to the lesion, with the most prominent decreases observed over the damaged brain regions. These findings have 2 important implications: (i) they provide evidence for functionally distinct facilitatory and inhibitory mechanisms supporting late auditory selective attention; (ii) they show that the LPFC is involved in the control of the facilitatory mechanisms of auditory attention.
Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking) is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity (RSFC) using magnetic resonance imaging (MRI) in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI) in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.