The discovery of small molecule inhibitors of cytotoxicity induced by amyloid-β (Aβ) oligomers, either applied extracellularly or accumulated intraneuronally, is an important goal of drug development for Alzheimer's disease (AD), but has been limited by the lack of efficient screening methods. Here we describe our approach using two cell-based methods. The first method takes advantage of the unique ability of extracellularly applied Aβ oligomers to rapidly induce the exocytosis of formazan formed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We employed a short protocol to quantify this toxicity, and quickly identified two novel inhibitors, code-named CP2 and A5, from two compound libraries. A second independent screen of the same libraries using our previously published MC65 protection assay, which identifies inhibitors of toxicity related to intracellular Aβ oligomers, also selected the same two leads, suggesting that both assays select for the same anti-Aβ oligomer properties displayed by these compounds. We further demonstrated that A5 attenuated the progressive aggregation of existing Aβ oligomers, reduced the level of intracellular Aβ oligomers, and prevented the Aβ oligomer-induced death of primary cortical neurons, effects similar to those demonstrated by CP2. Our results suggest that, when combined, the two methods would generate fewer false results and give a high likelihood of identifying leads that show promises in ameliorating Aβ oligomer-induced toxicities within both intraneuronal and extracellular sites. Both assays are simple, suitable for rapid screening of a large number of medicinal libraries, and amenable for automation.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor, and amyloid beta peptide (Abeta) is one of the ligands for RAGE. Because RAGE is a transporter of Abeta from the blood to the brain, RAGE is believed to play an important role in Alzheimer's disease (AD) pathogenesis. In the present study, the role of RAGE in Abeta production was examined in the brain tissue of an AD animal model, Tg2576 mice, as well as cultured cells. Because beta-site APP-cleaving enzyme 1 (BACE1), an essential protease for Abeta production, is up-regulated in cells overexpressing RAGE and in RAGE-injected brains of Tg2576 mice, the molecular mechanisms underlying RAGE, BACE1 expression, and Abeta production were examined. Because RAGE stimulates intracellular calcium, nuclear factor of activated T-cells 1 (NFAT1) was examined. NFAT1 was activated following RAGE-induced BACE1 expression followed by Abeta generation. Injection of soluble RAGE (sRAGE), which acts as a competitor with full-length RAGE (fRAGE), into aged Tg2576 mouse brains reduced the levels of plaques, Abeta, BACE1, and the active form of NFAT1 compared with fRAGE-injected Tg2576 mice. Taken together, RAGE stimulates functional BACE1 expression through NFAT1 activation, resulting in more Abeta production and deposition in the brain.
We investigated the cognition enhancing effects of ginsenoside Rb1 and Rg1. Mice were trained in a Morris water maze following injection (i.p.) of Rb1 (1 mg/kg) or Rg1 (1 mg/kg) for 4 days. Both Rb1- and Rg1-injected mice showed enhanced spatial learning compared to control animals. The hippocampus, but not the frontal cortex, of treated mice contained higher density of a synaptic marker protein, synaptophysin, compared to control mice. Electrophysiological recordings in hippocampal slices revealed that Rb1 or Rg1 injection did not change the magnitude of paired-pulse facilitation or long-term potentiation. Our results suggest that Rb1 and Rg1 enhance spatial learning ability by increasing hippocampal synaptic density without changing plasticity of individual synapses.
Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway.
The self-assembly and electrochemical properties of a novel Ru(bimpyH2) complex functionalized by disulfide
on a polycrystalline gold electrode (bimpyH2 = bis(benzimidazol-2-yl)pyridine) were characterized by means of
MALDI-TOF mass spectrometry, XPS, and cyclic voltammetry. The Ru complex monolayers exhibit a quasi-reversible Ru(III/II) oxidation at +0.66 V vs SCE in 0.1 M HClO4 aqueous solution. The shape of the cyclic
voltammograms for Ru(III/II) couple is strongly dependent on the surface coverage, and is close to the ideal
voltammogram when the Ru neat monolayers are diluted by octanethiol. The oxidation potential of the Ru complex
mixed monolayers with octanethiol shows a linear dependence on solution pH, indicating that the proton-coupled
oxidative reactions occurred on the gold surface. The pK
a values for the Ru mixed monolayers on the gold surface
were obtained as pK
a1 = 6.0 and pK
a2 = 7.8 for the Ru(II) state and ∼1.5 and 3.4 for the Ru(III) state from the
E
1/2−pH plots. The pK
a values of the Ru(bimpyH2) group on the gold surface are a little smaller than those of
[Ru(dmbimpy)(bimpyH2)]2+ (dmbimpy = bis(1-methylbenzimidazol-2-yl)pyridine) in the bulk solution. These
disulfide-functionalized Ru(bimpyH2) complex monolayers on the gold surface can act as an electrochemical pH
probe on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.