Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.
Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.
Boron‐doped Li[Ni0.90Co0.05Mn0.05]O2 cathodes are synthesized by adding B2O3 during the lithiation of the hydroxide precursor. Density functional theory confirms that boron doping at a level as low as 1 mol% alters the surface energies to produce a highly textured microstructure that can partially relieve the intrinsic internal strain generated during the deep charging of Li[Ni0.90Co0.05Mn0.05]O2. The 1 mol% B‐Li[Ni0.90Co0.05Mn0.05]O2 cathode thus delivers a discharge capacity of 237 mAh g−1 at 4.3 V, with an outstanding capacity retention of 91% after 100 cycles at 55 °C, which is 15% higher than that of the undoped Li[Ni0.90Co0.05Mn0.05]O2 cathode. This proposed synthesis strategy demonstrates that an optimal microstructure exists for extending the cycle life of Ni‐rich Li[Ni1‐x‐yCoxMny]O2 cathodes that have an inadequate cycling stability in electric vehicle applications and indicates that an optimal microstructure can be achieved through surface energy modification.
Carbon-coated NaCrO2 synthesized via an emulsion method exhibits excellent cyclability and ultrafast rate capability up to a rate of 150 C, demonstrating ideal properties for advanced sodium-ion batteries.
Improved efficiency and cyclability of cells containing LiBr demonstrate that the appropriate choice of electrolyte solution is the key to a successful Li–O2 battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.