Deep learning methods have proven to be effective in the field of crowd analysis recently. Nonetheless, the performance of deep learning models is affected by the inadequacy of training datasets. Because of policy implications and privacy restrictions, crowd data is commonly difficult to access. In order to overcome the difficulty of insufficient dataset, the previous work used to synthesize labelled crowd data in outdoor scenes and virtual games. However, these methods perform data synthesis with limited environmental information and inflexible crowd rules, usually in unauthentic environment. In this paper, a tool for synthesizing crowd data in BIM models with multiple scenes is proposed. This tool can make full use of the comprehensive information of real-world buildings, and conduct crowd simulations by setting behavior rules. The synthesized dataset is used for data augmentation for crowd analysis problems and the experimental results clearly confirm the effectiveness of the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.