Abstract:Options to tackle the sustainability challenges faced in the production of rice, including global and local environmental perspectives, need to be discussed. Here, the global warming potential, water consumption and cumulative energy demand were analyzed using a life-cycle assessment to highlight the sustainability aspects of rice production in Taiwan, where a mixed organic and conventional rice production with a dual cropping system is practiced. The results show that the conventional farming method practiced in Houbi district contributes less to global warming and annual water consumption and consumes less energy than the organic method practiced in Luoshan village on a grain weight basis. It is also more lucrative for farmers because of the higher rice yield. Considering the yield ratio based on the data from two districts, the regional characteristics are more responsible for these differences. Giving up dual cropping to avail water to other sectors by fallowing during the second cropping season is preferable from the GHG emission and productivity perspectives. However, because water shortages usually occur in the first cropping season, it is more realistic to fallow during the first cropping season when domestic and other industrial users have the higher priority. The results presented here can serve as the foundation for exploring the possibilities of options, such as new biorefinery technologies and water allocation policies, in relation to influences on GHG emissions and the national self-sufficiency of rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.