This paper proposes an approach to strength adjustment for MCTS-based game-playing programs. In this approach, we use a softmax policy with a strength index z to choose moves. Most importantly, we filter low quality moves by excluding those that have a lower simulation count than a pre-defined threshold ratio of the maximum simulation count. We perform a theoretical analysis, reaching the result that the adjusted policy is guaranteed to choose moves exceeding a lower bound in strength by using a threshold ratio. The approach is applied to the Go program ELF OpenGo. The experiment results show that z is highly correlated to the empirical strength; namely, given a threshold ratio 0.1, z is linearly related to the Elo rating with regression error 47.95 Elo where −2≤z
≤2. Meanwhile, the covered strength range is about 800 Elo ratings in the interval of z in [−2,2]. With the ease of strength adjustment using z, we present two methods to adjust strength and predict opponents’ strengths dynamically. To our knowledge, this result is state-of-the-art in terms of the range of strengths in Elo rating while maintaining a controllable relationship between the strength and a strength index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.