SERPINE1 mRNA-binding protein 1 (SERBP1) is an arginine-methylated RNA-binding protein whose modification affects protein interaction and intracellular localization. In the present study, we show that, under normal growth conditions without stress, SERBP1 interacts with arginine-methylated and stress granule-associated proteins such as heterogeneous nuclear ribonucleoprotein A1, fragile X mental retardation protein and fragile X mental retardation syndrome-related protein 1 in an RNA-dependent manner. We also show that, after arsenite treatment, a proportion of full-length SERBP1 protein co-localizes with the typical stress granule marker T-cell intracellular antigen-1 in the cytoplasmic stress granules. Truncated SERBP1 with an Nterminal, central RG or C-terminal deletion, or single-domain segments comprising the N-terminal, central or C-terminal region, were recruited to stress granules upon arsenite treatment but with reduced efficiency. In addition, upon arsenite treatment, the localization of SERBP1 changed from a diffuse cytoplasmic localization to nuclear-dominant (concentrated in the nucleolus) A similar distribution was observed when cells were treated with the methylation inhibitor adenosine periodate, and was also detected for N-or C-terminal domain deletions and all three single-domain fragments even without stress induction. We further demonstrate that adenosine periodate treatment delays the association/dissociation of SERBP1 with stress granules. Hypomethylation retains SERBP1 in the nucleus/nucleolus regardless of arsenite treatment. Our study indicates that arginine methylation is correlated with recruitment of SERBP to stress granules and nucleoli and its retention therein. To our knowledge, this is the first report of an RNA-binding protein that is shifted simultaneously to cytoplasmic stress granules and nucleoli, two ribonucleoprotein-enriched subcellular compartments, upon stress.
Edited by Michael IbbaKeywords: CNBP RNA binding Protein arginine methylation a b s t r a c t Cellular nucleic acid binding protein (CNBP) contains seven zinc finger (ZF) repeats and an arginine and glycine (RG) rich sequence between the first and the second ZF. CNBP interacts with protein arginine methyltransferase PRMT1. Full-length but not RG-deleted or mutated CNBP can be methylated. Treatment with a methylation inhibitor AdOx reduced CNBP methylation, but did not affect the concentrated nuclear localization of CNBP. Nevertheless, arginine methylation of CNBP appeared to interfere with its RNA binding activity. Our findings show that arginine methylation of CNBP in the RG motif did not change the subcellular localization, but regulated its RNA binding activity. Structured summary of protein interactions:PRMT1 binds to CNBP by pull down (View interaction) PRMT1 methylates CNBP by enzymatic study (View interaction) CNBP physically interacts with PRMT1 by anti tag coimmunoprecipitation (View interaction)
BackgroundAntibodies against spliceosome Sm proteins (anti-Sm autoantibodies) are specific to the autoimmune disease systemic lupus erythematosus (SLE). Anti-Sm autosera have been reported to specifically recognize Sm D1 and D3 with symmetric di-methylarginines (sDMA). We investigated if anti-Sm sera from local SLE patients can differentially recognize Sm proteins or any other proteins due to their methylation states.ResultsWe prepared HeLa cell proteins at normal or hypomethylation states (treated with an indirect methyltransferase inhibitor adenosine dialdehyde, AdOx). A few signals detected by the anti-Sm positive sera from typical SLE patients decreased consistently in the immunoblots of hypomethylated cell extracts. The differentially detected signals by one serum (Sm1) were pinpointed by two-dimensional electrophoresis and identified by mass spectrometry. Three identified proteins: splicing factor, proline- and glutamine-rich (SFPQ), heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and cellular nucleic acid binding protein (CNBP) are known to contain methylarginines in their glycine and arginine rich (GAR) sequences. We showed that recombinant hnRNP DL and CNBP expressed in Escherichia coli can be detected by all anti-Sm positive sera we tested. As CNBP appeared to be differentially detected by the SLE sera in the pilot study, differential recognition of arginine methylated CNBP protein by the anti-Sm positive sera were further examined. Hypomethylated FLAG-CNBP protein immunopurified from AdOx-treated HeLa cells was less recognized by Sm1 compared to the CNBP protein expressed in untreated cells. Two of 20 other anti-Sm positive sera specifically differentiated the FLAG-CNBP protein expressed in HeLa cells due to the methylation. We also observed deferential recognition of methylated recombinant CNBP proteins expressed from E. coli by some of the autosera.ConclusionOur study showed that hnRNP DL and CNBP are novel antigens for SLE patients and the recognition of CNBP might be differentiated dependent on the level of arginine methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.