-Real time transient stability assessment mainly depends on real-time prediction.Unfortunately, conventional techniques based on offline analysis are too slow and unreliable in complex power systems. Hence, fast and reliable stability prediction methods and simple stability criterions must be developed for real time purposes. In this paper, two new methods for real time determining critical clearing time based on clustering identification are proposed. This article is covering three main sections: (i) clustering generators and recognizing critical group; (ii) replacing the multi-machine system by a two-machine dynamic equivalent and eventually, to a one-machineinfinite-bus system; (iii) presenting a new method to predict post-fault trajectory and two simple algorithms for calculating critical clearing time, respectively established upon two different transient stability criterions. The performance is expected to figure out critical clearing time within 100ms-150ms and with an acceptable accuracy.
-Recently, Korean system operating conditions have gradually approached an upper limit.When a contingency occurs, the power system may have no solutions. Different from the cases of bad initial guesses or the solutions are too close to the solvability boundary in which numerical methods can be applied, for unsolvable cases, the only way to restore solvability would be structure modifications. In this paper, a new approach for corrective and preventive control to such cases is proposed in two steps: (i) finding any solution regardless its feasibility; (ii) for the infeasible solution, make it feasible with additional modifications at load buses having Distributed Energy Resources. The test case built based on the peak load profile of 2008 by KEPCO including 1336 buses is analyzed. Since reactive power compensation is optimized to restore solvability, all demands are met, therefore no blackouts happen. The proposed method was integrated in the LP program designed by power21 Corporation.
Corrosion of the steel reinforcement bars reduces the area of the steel bar and the bond stress between the steel bars and around concrete that decreases the capacity of concrete structures. In this study, the bond stress between steel bar with a diameter of 12mm and concrete was examined with the effect of different corrosion levels and different concrete grades. A steel bar was inserted in a concrete block with a size of 20×20×20cm. The compressive strength of concrete was 25.6MPa, 35.1MPa, and 44.1MPa. These specimens were soaked into solution NaCl 3.5% to accelerate the corrosion process with different corrosion levels in the length of 60mm. The pull-out test was conducted. Results showed that the bond strength of the corroded steel bar was higher than that predicted from CEB-FIP. Slip displacement and the range of slip displacement at the bond strength were reduced when the concrete compressive strength was increased. The rate of bond stress degradation occurred faster with the increment of the corrosion level when the concrete compressive strength was increased.
Approach road is an important structure of a bridge. Serviceability of a bridge is affected by the settlement of approach road, especially that on soft soil. One method that is usually applied for minimizing effect of settlement of approach road is to replace soft soil by hill soil. This method however may increase cost of projects in Mekong Delta area with a larger depth of soft soil. In this paper, soft soil strengthened by mixing it to cement and fly ash at different mix proportions was investigated. Test results from unconfined compression test and direct shear test of strengthened soft soil are compared to those of hill soil to determine the optimal mix proportion. Results showed that mixing 25kg cement and 75kg or 100kg fly ash to 1m3 soft soil increased its unconfined compressive strength and shear strength and are higher compared to those of hill soil. Strengthening in situ soft soil by using fly ash, industrial waste from thermal power plant, reduces cost of project and at the same time contributes to solving environmental problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.