BackgroundSubstantial evidence suggests that increased oxidative stress in hemodialysis (HD) patients may contribute to cardiovascular complications. Oxidative modifications of human serum albumin (HSA), the largest thiol pool in plasma, alter its biological properties and may affect its antioxidant potential in HD patients.MethodsWe conducted a long-term follow-up study in a cohort of normoalbuminemic HD patients to examine the impact of redox state of serum albumin on patients’ survival by measuring the human nonmercaptoalbumin (HNA) fraction of HSA.ResultsAfter adjusting for potential demographic, anthropometric, and clinical confounders, a positive association of HNA level with the risk of death from cardiovascular disease (CVD) and all-cause mortality was observed in normoalbuminemic HD patients. Using stratified analysis, we found a stronger association between HNA level and the risk of death from CVD and all-cause mortality in patients with pre-existing CVD.ConclusionsSerum HNA level is a positive predictor of mortality in normoalbuminemic HD patients, especially among those with pre-existing CVD. Increased oxidative stress resulting from biological changes in serum albumin levels could contribute to accelerated atherosclerosis and the development of cardiovascular disease in HD patients.
Two-dimensional ultrasonic imaging is demonstrated by using acoustic nanowaves. With a 14 nm acoustic wavelength, both axial and transverse resolutions of a few tens of nanometers are thus achieved. This ultrasonic-based nondestructive technique not only images but also reconstructs the subsurface nanostructures including the depth positions of the buried interfaces. By demonstrating two-dimensional nanoultrasonic scans in depth and transverse ͑or z-x͒ axes, we show that acoustic nanowaves can be a promising tool for future subsurface three-dimensional noninvasive imaging with nanometer resolutions.
Despite the continuous progression in dialysis medicine, mortality and the burden of cardiovascular disease (CVD) among hemodialysis patients are still substantial. Substantial evidence suggests that proinflammatory (CD16+) monocytes contribute to the development of atherosclerosis. A cohort of 136 stable hemodialysis patients (follow-up: 6.25 year) was assessed to investigate the association between the proportion of CD16+ monocytes for all-cause and CVD mortalities. The CD16+ monocytes were associated with both mortalities after adjusting for a preexisting CVD history. Compared to the reference group (CD16+ monocytes within [15.6–18.6], the first and second quartile), patients with CD16+ monocytes above the highest quartile level (>21.5) had an adjusted hazard ratio (HR) of 30.85 (95% confidence interval [CI]: 7.12–133.8) for CVD mortality and 5.28 (2.07–13.49) for all-cause mortality, and those with CD16+ monocytes below the lowest quartile ≤15.6), had significantly elevated death risks after 3.5-year follow-up (HR [95% CI]: 10.9 [2.42–48.96] and 4.38 [1.45–13.24] for CV and all-cause mortalities, respectively). The hemodialysis patients with CD16+ monocyte level in a low but mostly covering normal range also portended a poor prognosis. The findings shed some light for nephrologists on future prospects of early recognizing immune dysfunction and improving early intervention outcomes.
Articles you may be interested inEffects of nanocrystal shape and size on the temperature sensitivity in Raman thermometry Appl. Phys. Lett. 103, 083107 (2013); 10.1063/1.4819170 Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique
Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm for Ag thin films and 40 nm for ZnO films, based on the admittance diagram. By designing the optical thickness of each ZnO layer and controlling process parameters such as IAD power when fabricating dielectric-metal-dielectric films at room temperature, we can obtain an average transmittance of 90% in the visible region and a bulk resistivity of 5 × 10−5 Ω-cm. These values suggest that the transparent ZnO/Ag/ZnO electrodes are suitable for use in dye-sensitized solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.