Gravimetric adsorption equipment with a microbalance was used to measure the adsorption of volatile organic compounds (VOCs) by activated carbon from 288 to 313 K. VOCs [n-hexane, cyclohexane, 1-hexene, 2-methylpentane, 3methylpentane, 2,2-dimethylbutane, acetone, butanone, and 2pentanone (Pentan-2-one)] were used as adsorbates in the adsorption system. Considering the geometric barrier, the critical diameter, and the boiling point, the adsorption capacities for sixcarbon (C 6 ) alkane isomers decrease in the order of n-hexane, 3methylpentane, and 2-methylpentane. The adsorbates, including nonpolar or weakly polar substances, and substances with smaller geometric obstacles and smaller molecular weights, were more easily adsorbed by the activated carbon. However, the dipole−dipole interactive force at higher pressures resulted in a higher adsorption capacity for 1-hexene than for n-hexane. Both polarity and molecular size should be considered in the analysis of the adsorption of ketones by activated carbon. The adsorption equilibrium constants decreased with increases in temperature because a higher temperature was unfavorable for adsorption. The results for the Toth adsorption isotherm model fitted by the adsorption data showed that the experimental data and the Toth adsorption isotherm model were consistent with each other, as evidenced by the low deviation between the experimental data and those from the fitted model.
Many studies have been conducted on hydrogen production, storage, purification, and transportation. The use of fixed-bed adsorption towers for hydrogen purification is common. The operating variables involved that could affect the adsorption behavior, such as the amount of adsorbents used, the flow rate, and the concentration of the adsorbate, should be discussed further. In addition, the pressure drop caused by the operation of the adsorption tower still needs to be considered. Therefore, the staggered stainless steel sheet coatings with SiO2/MCM41/activated carbon composite membrane were mounted in a twin-tower adsorption system to purify the hydrogen. Similar to the pressure swing adsorption (PSA) system, the amounts of SiO2, activated carbon, and molecular sieves used in the adsorption tower were changed into the amounts of tetraethoxysilane (TEOS), activated carbon powder, and MCM41 powder added to the casting solution. The experimental results showed that the performance of this twin-tower hydrogen purification system would not be increased when one of the target adsorbents was excessive. In addition, the outflow of non-hydrogen components was found to be early when a certain adsorbent was not sufficient. Finally, the recommended switching time for this system was set at an adsorption capacity reaching about 75% saturated capacity.
The depression in vapor pressure caused by adding desiccant to liquid water can be regarded as the driving force for the dehumidification process. The vapor pressure depends on the temperature and the concentration. Therefore, the purpose in this study is to discuss the mass transfer performance affected by operating variables and to show that the vapor pressure is a key factor affecting the mass transfer performance for absorbing water vapor by triethylene glycol (TEG) solution. The experimental results showed that the mass transfer coefficients were decreased with increases in the temperature and increased with increases in the concentration, respectively, while the mass transfer coefficients were increased with increases in the vapor pressure depression. Although both the average error is within 5% among the mass transfer correlation involving the vapor pressure and that involving the temperature and the concentration in predicting the mass transfer coefficient, there are just two terms, those are vapor pressure and fluid flow rate, associated with operating variables used in the mass transfer correlation. The depression in vapor pressure was not only proved to be the driving force for absorbing water vapor by a desiccant solution, but also a key factor affecting the mass transfer performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.