Volatile sulfur compounds (VSCs) are a major component of odorous emissions that can cause annoyance to local populations surrounding wastewater, waste management and agricultural practices. Odour collection and storage using sample bags can result in VSC losses due to sorption and leakage. Stability within 72 hour storage of VSC samples in three sampling bag materials (Tedlar, Mylar, Nalophan) was studied at three temperatures: 5, 20, and 30 °C. The VSC samples consisted of hydrogen sulfide (H2S), methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (DMS), tert-butanethiol (t-BuSH), ethylmethyl sulfide (EMS), 1-butanethiol (1-BuSH), dimethyl disulfide (DMDS), diethyl disulfide (DEDS), and dimethyl trisulfide (DMTS). The results for H2S showed that higher loss trend was clearly observed (46-50% at 24 hours) at 30 °C compared to the loss at 5 °C or 20 °C (of up to 27% at 24 hours) in all three bag materials. The same phenomenon was obtained for other thiols with the relative recoveries after a 24 hour period of 76-78% at 30 °C and 80-93% at 5 and 20 °C for MeSH; 77-80% at 30 °C and 79-95% at 5 and 20 °C for EtSH; 87-89% at 30 °C and 82-98% at 5 and 20 °C for t-BuSH; 61-73% at 30 °C and 76-98% at 5 and 20 °C for 1-BuSH. Results for other sulfides and disulfides (DMS, EMS, DMDS, DEDS) indicated stable relative recoveries with little dependency on temperature (83-103% after 24 hours). DMTS had clear loss trends (with relative recoveries of 74-87% in the three bag types after 24 hours) but showed minor differences in relative recoveries at 5, 20, and 30 °C.
Odorous emissions from agricultural and waste management operations can cause annoyance to local populations. Volatile sulfur compounds (VSCs) are dominant odorants that are often lost during collection using sample bags. The degree of VSC losses depends on factors such as storage time, bag materials, temperature, sample relative humidity (RH), light exposure, and the presence of volatile organic compounds (VOCs). To assess the impact of those factors on the stability of 10 VSCs (hydrogen sulfide, methanethiol, ethanethiol, dimethyl sulfide, tert-butanethiol, ethyl methyl sulfide, 1-butanethiol, dimethyl disulfide, diethyl disulfide, and dimethyl trisulfide), laboratory-based experiments were conducted according to a factorial experimental design. Linear mixed-effects models were constructed for loss predictions. The estimated recovery of HS in Tedlar bag was 8 to 10% higher than in Mylar and Nalophan between 6 and 30 h. At ≤20°C and without being exposed to light, at least 75% relative recovery of the 10 VSCs in Tedlar bags can be achieved after 18 h, whereas, a maximum of 12 h of storage should not be exceeded to ensure a minimum of 74% relative recovery of the VSCs in Mylar and Nalophan bags.
Odourous emissions from sewer networks and wastewater treatment plants (WWTPs) can significantly impact a local population. Sampling techniques such as wind tunnels and flux hood chambers are traditionally used to collect area source samples for subsequent quantification of odour emission rates using dilution olfactometry, however these methods are unsuitable for assessing liquid samples from point sources due to the large liquid volumes required. To overcome this limitation, a gas phase sample preparation method was developed for assessing the total Odour Emission Ability (OEA) from a liquid sample. The method was validated using two volatile organic sulphur compounds (VOSCs), dimethyl-trisulphide (DMTS) and bismethylthiomethane (BMTM) that are frequently detected from sewers and WWTPs and are relatively stable compared with common VOSCs like mercaptan or methyl mercaptan. The recovery rates of DMTS and BMTM were quantified by injecting a known volume of a standard liquid sample into Tedlar bags using a static injection and a dynamic injection methodology. It was confirmed that both dynamic and static injection methods at ambient condition achieved high recovery rates with no need to consider increasing evaporation by elevating the temperature. This method can also be used to assess odour removal effectiveness of liquids by comparing the OEA before and after the treatment tests. Two application examples were presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.